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Abstract 

Cryptocurrency and blockchain are often synonymous, but over the last ten years each unique yet 

non distinct entity has staked a claim into the world of financial technology—a territory riddled 

with numerical puzzles; blending the art of predicting future results and seasonality with the 

science of time series projections hinges on a few important notions. Past performance is not 

indicative of future results, though it is useful in establishing trajectories. Investors and 

speculators alike can leverage the power of predictive analytics to establish trends on an ever-

changing, ever-evolving domain that will remain relevant into the distant future. This paper aims 

to provide more than a cursory analysis of the behaviors and patterns of Litecoin (LTC) over the 

last decade, leveraging seasonality of the autoregressive integrated moving average model to 

forecast a sound and proper price trajectory that will give prospective investors a healthy outlook 

for future growth. 

 Keywords: time series analysis, ARIMA, GARCH, Litecoin, cryptocurrency, forecast, 

volatility, R programming 
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Background: LTC Forecast - Variations on the Autoregressive Moving Average Model 

2009 was an impactful year. An economic recession was underway, Barack Obama made 

history as the first African American President to be inaugurated into office, and Bitcoin (the 

world’s first cryptocurrency) launched a new era in financial technology known as blockchain. 

Since then, the market has witnessed a plethora of rapidly expanding offshoots of this 

technology, scaled to provide encrypted solutions to managing smart contracts and currency 

worldwide. Litecoin, one such cryptocurrency was launched as a peer-to-peer smart contract 

provider (digital currency) in 2011 by a computer scientist named Charlie Lee. To this day, while 

most people remain skeptical of the benefits of investing in cryptocurrencies at large, one cannot 

doubt its rapid expansion and integration into the financial markets. Litecoin started trading at 

roughly $3.00 (USD) per coin and is now listed as one of the top cryptocurrency providers on the 

market. 

While cryptocurrencies are part of a relatively new landscape within the context of 

financial markets, it is difficult to neglect their efficacy in producing returns on investments, 

decentralized systems, and secure financial transactions. Every investment carries with it a 

degree (standard deviation) of risk, be it a stock, mutual fund, or call option. Assessing that risk 

or volatility need not be relegated to the confines of a client-fiduciary relationship with an 

investment firm. For example, making informed decisions from a mathematically oriented 

vantage point can make the difference between calculated arbitrage and gambling. Litecoin was 

established to be complementary to Bitcoin, where it “can be used for smaller amounts of money 

and have lower fees” (SFOX, 2015). For prospective investors that are looking to diversify their 

portfolios in an evolving market where the future knows no limits, forecasting its potential and 

entertaining the idea or notion that this can create a possible economic boom (in the long run) is 

at a minimum, a worthwhile endeavor.  
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Literature Review 

Existing and Alternative Methods  

Cryptocurrencies exhibit peaks and troughs in the span of their continuously fluctuating 

financial life cycles. Despite the approach in analyzing this data, the principles of inherent noise, 

non-stationarity, and volatility hold true to these time series. Whereas from a machine learning 

perspective principal component analysis helps reduce the number of dimensions in the training 

set of data, Gidea et al. (2020) impose PCA on clustered data; this is done to illustrate log 

transformed price projections from a graphical rendering standpoint alone. Omitting statistical 

assumptions from modeling is commensurate with removing the inherent bias-variance trade-off 

structure that abounds. This introduces the geometric method of “topological data analysis 

(TDA)” (Gidea et al., 2020, p. 1), which helps leverage the unsupervised, non-parametric 

learning methodology of the k-means clustering landscape. However, Gidea et al. (2020) 

concede the necessity of summarizing statistical output following the fitting of generalized 

autoregressive conditionally heteroskedastic (GARCH) models. 

Moreover, it is noted that “statistical properties of such assets show…distinctly non-

stationary behavior” (pp. 9-10). This warrants logarithmic transformation of the asset (i.e., 

Litecoin) in conjunction with differencing of the volatility shocks, which translate to 𝐿1-norms of 

the persistence landscapes as functions of TDA.  

Forecasting Prices with R 

Paul & Sadath (2021) make the case for using R versus Python in forecasting 

cryptocurrency time series for its relative novelty and reliability in producing statistical output. A 

short yet effective primer is given on blockchain technology—the instrumental force of smart 

contracts behind a network of distributed and decentralized ledgers used “to trade digital 

currency or tokens” (Paul & Sadath, 2021, p. 286). Bitcoin effectively instantiates the digital 
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currency market, creating exponential price hikes through latter 2017, causing it to lose 70% of 

its value by early 2018 (p. 287). Suggestions for usage of deep learning models are made (i.e., 

bagging and stacking), citing ensemble methods as an “effective methodology to forecast 

cryptocurrency prices” (p. 287) and Twitter sentiment analysis. However, the predominant focus 

stays with time series analysis using the Prophet forecasting library in R, which can forecast 

“time series data based on additive model, in which non-linear trends are fit with yearly, weekly, 

and daily seasonality” (p. 288).  

Moreover, recommendations for using autoregressive independent moving average 

(ARIMA), GARCH, and neural network autoregression (NNAR) models are made, citing better 

performance with NNAR with less volatility. However, “in case of extreme volatility ARIMA 

models show more accurate results” (p. 288). A cursory comparison of Bitcoin (BTC) prices 

with those of Ethereum (ETH) using Yahoo finance from 2015 until 2019 sets precedence for 

subsequent time series analyses for other cryptocurrencies to follow suit. Whereas establishing 

trends inherently necessitates a differencing of at least the first order, such a recommendation is 

not provided; albeit a log transformation of closing prices is noted wherein a one year out 

forecast is made.  

Forecasting Comparison by Bayesian Time-Varying Volatility Models  

Bohte and Rossini (2019) have contributed to a fine analysis of forecasting comparisons 

of cryptocurrencies using multiple Bayesian time-varying volatility models. Vector 

Autoregressive (VAR) models are generally used for empirical macroeconomic applications, and 

in this case, the Bayesian approach contains the stochastic volatility specification which is 

computationally tractable while possessing advantages in parameter uncertainty, computing of 

probabilistic statements and estimation with many parameters (Bohte & Rossini, 2019). To gain 

a better glance on if a more complex model can outperform a simple model on forecasting, a 
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total of three models are used: The standard VAR model, VAR with stochastic volatility, and 

VAR with GARCH.  

After using a series of point and density measurements which focus on 95% confidence 

intervals and Root Mean Squared Error (RMSE), the BVAR base model has shown a higher 

volatility in forecasting compared to the BVAR-GARCH model. The BVAR-SV and BVARX-

SV models have the highest percentages of all the cryptocurrencies, which suggests that using 

Stochastic Volatility will not give a good prediction overall using confidence intervals (Bohte & 

Rossini, 2019). Since the results between the BVAR model and the BVARX model are close to 

each other, there is not a clear distinction between these two and hence does not help establish a 

preference for a model of choice.  

Half-Life Volatility Measure 

Engle and Patton (2001) define half-life as the time required for the volatility to move 

halfway back towards its unconditional mean. To investigate the half-life volatility measure of 

some cryptocurrencies, John et al. (2019) propose choosing two GARCH family models 

(PGARCH (1, 1) and GARCH (1, 1)) with the Student’s-t distribution. After fitting the error 

term of the two GARCH models into various distributions (Gaussian, Student’s-t, and 

Generalized Error), the PGARCH model is selected (John et al., 2019). During the procedure, the 

following tests are performed with notable results: 

o The Jarque-Bera test for normality is statistically significant at the 5% alpha level for 

the return, meaning the return series is not normally distributed. 

o The Ljung-Box Q-statistics for the return and squared return show evidence of 

autocorrelation in both the return and squared return series since Q (30) and Q2 (30) 

are significant at the 5% level of significance. 

o The Quantile-Quantile plot is employed to confirm that the return is not normally 
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distributed, which is confirmed by the presence of outliers at the tails since the points 

do not approximate the straight line. 

GARCH(1,1) is proven to show non-stationarity while PGARCH(1,1) shows stationarity. Thus, 

the PGARCH model is chosen to investigate the half-life volatility measure of the return of 

Litecoin. The returns of the cryptocurrencies used in the paper exhibit volatility persistence and 

long memory by observation of the return series. A shock in the returns of Litecoin will take six 

days for it to mean revert without any further volatility (John et al., 2019). Therefore, 

information pertaining to the half-life measure and volatility persistence the cryptocurrency 

market is important for investors to consider. 

Exploratory Data Analysis (EDA) and Initial Preprocessing Steps 

Preprocessing has its own unique procedure within the context of time series analysis; 

this will be discussed at length in a later section. Nonetheless, the following data cleaning steps 

are discussed to establish a foundational analytics framework. The quantmod library in R is 

installed, loaded, and leveraged to extract the Litecoin (LTC-USD) symbol from Yahoo Finance, 

the source that is connected to this library. The data is presented as a time series object which is 

subsequently converted into a data frame and assigned to its own unique variable. The dataset 

contains 2,632 rows, representing the date range of September 17, 2014 through November 30, 

2021, and 6 columns (variables), corresponding to open, high, low, close (adjusted prices), and 

volume.  

Data prior to September 17, 2014 is not available for reasons not offered by the provider. 

OHLC is used to abbreviate open, high, low, close prices in United States Dollars (USD). There 

are 24 missing values, which are omitted by calling a function that uses complete cases. 

Incomplete price data should not be imputed (i.e., mean, median, or any other method), for a 

potential loss in data integrity may result. This lends the dataset to subsequent preprocessing 
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with relative ease. Examination of the OHLC price histograms and boxplots, respectively, 

reveals non-normal distributions for all variables. Figure 1 uncovers these degenerate, long-tailed 

distributions. 

Figure 1 

Litecoin Historical Prices and Volume Distributions (September 17, 2014 – November 30, 2021) 

 

 

 

 

 

 

 

 

 

 

 

Note. Most prices are between $0 to $100 (USD), exhibiting rightly skewed distributions. 

The data is therefore pre-processed with a Box-Cox transformation with an estimated 𝜆 of 0.2 for 

prices and 0.1 for volume. The skewness improves considerably where 

𝜇̃3 =
∑ (𝑋𝑖 − 𝑋̅)3𝑁

𝑖

(𝑁 − 1)𝜎3
 

and −0.383 ≤ 𝜇̃3 ≤ −0.055. However, this is strictly an exploratory preprocessing step to show 

potential improvement in estimating a Gaussian (normal) distribution, thus, not warranting 

integration into the original data frame; this is done to avoid loss of viability.  
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  In evaluating Litecoin’s performance, the close price may be intrinsically of interest, but 

the “adjusted closing price is considered to be a more technically accurate reflection of the true 

value” (Bischoff, 2019). Summarizing the data frame yields the following five number summary. 

Whereas the minimum adjusted price for the last six years is $1.16, the first quartile is $3.88, 

with a median of $46.32, and a mean of $64.08; the third quartile is $87.12, and the maximum 

recorded price for this date range is $386.45. From the supplementary correlation matrix used to 

examine the relationships between all six variables, it is discernible that whereas the OHLC 

prices exhibit perfect multicollinearity at 𝑟 = 1, their relationship with volume is much less 

pronounced, where −0.56 ≤ 𝑟 ≤ −0.58. The moderate correlation of r = 0.57 between the 

variable of interest (adjusted price) and volume does not lend itself for omission from ensuing 

analysis, nor does volume itself offer substantial influence on price. It exists to represent the full 

scope and context of the dataset at large. Granted, it will not be used within the context of this 

analytical endeavor. Moreover, principal component analysis (PCA) shows that 89.4% of the 

variance in the data is explained by the first principal component, where “the percentage of the 

total variance explained by each component” (Kuhn & Johnson, 2016, p. 38), translating to an 

effective dimension of 1. This is demonstrated numerically in Table 1 (in supplemental 

materials).  

  To graphically illustrate the historically adjusted prices, a new time series object in the 

form of a vector is created for the sole purpose of avoiding the representation of indexed time on 

the x-axis. Indexed time is harder to derive meaning from and defeats the purpose of graphical 

parsimoniousness. Therefore, it is important to see the impact of volatility visa vie market 

crashes and the corresponding years that this takes place. Furthermore, this object is placed into a 

plotting variable called litecoin_plot, with a starting date of 2014 and an annual frequency of 

365; this is shown in Figure 2 below. 
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Figure 2 

LTC Adjusted Closing Prices (2014 – 2021) 

  

Note. Several crashes are observed (between 2017 – 2018 and 2020 – 2021).  

Spectral Analysis Cyclical Behavior Periodogram Filters 

  An ensuing spectral analysis to determine the degree of periodicity within the data frame 

is conducted because “the idea that a time series is composed of periodic components appearing 

in proportion to their underlying variances is fundamental to spectral analysis” (Shumway & 

Stoffer, 2019, p. 137). Two dominant peaks (0.001, 0.001) are recorded, translating to cyclical 

behavior between 675 and 1,350 days. However, the confidence intervals based on the chi-

squared distribution for the first (149,449.40 to 21,775,218.90) and second (357,264.80 to 

52,054,543.70) period frequencies are too wide to be of use. Additional periodogram analyses 

will be required (i.e., to measure the effects of tapering), but “the periodogram as an estimator is 

susceptible to large uncertainties. This happens because the periodogram uses only two pieces of 

information at each frequency no matter how many observations are available” (p. 153). 
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Methodology 

 Further examination of the Litecoin time series includes the autocorrelation function 

(ACF) and partial autocorrelation function (PACF). ACF “measures the linear predictability of 

the series at time t, say 𝑥𝑡 using only the value of 𝑥𝑠” (Shumway & Stoffer, 2019, p. 20). The 

PACF does the same for a truncated lag length, explaining the partial correlation between the 

series its own lags. The sample ACF is defined as follows: 

𝜌 𝑥(ℎ) =
𝛾 𝑥(ℎ)

𝛾 𝑥(0)
=

(𝑋𝑡+ℎ − 𝑋̅)(𝑋𝑡 − 𝑋̅)

∑(𝑋𝑡 − 𝑋̅)2
= Corr(𝑋𝑡+ℎ, 𝑋𝑡). 

An initial overview of the data shows that whereas the ACF gradually tapers off, the PACF cuts 

off after lag 1, thereby relegating the time series to the AR(1) model: 

(𝑥𝑡 − 𝜇) = 𝜙(𝑥𝑡−1 − 𝜇) + 𝜔𝑡 =  (𝑥𝑡 − 64.0773) = 0.9960(𝑥𝑡−1 − 64.0773) + 𝜔𝑡 

𝑥𝑡 = 0.256 + 0.996𝑥𝑡−1 + 𝜔𝑡 

Differencing and Stationarity 

Establishing non-stationarity in a time series component requires the expression of the 

mean as a function of time t where 𝐸[𝑦𝑡] = 𝐸[𝛽0 + 𝛽1𝑡 + 𝜔𝑡] = 𝛽0 + 𝛽1𝑡. Time is non-

stationary because  𝑡1 ≠ 𝑡2 and 𝜇(𝑡1) ≠ 𝜇(𝑡2). To mitigate the continuous fluctuations 

exacerbated by predominant peaks, troughs, and general volatility of cryptocurrency market, the 

year-over-year trends observed in Litecoin’s historically adjusted prices necessitate first order 

differencing ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1. Stationary is established visa vie the mean and autocovariance 

functions, respectively. 

∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = (𝛽1)(𝑡 − [𝑡 − 1]) + 𝜔𝑡 − 𝜔𝑡−1 .  ∴ 𝛽1 + 𝜔𝑡 − 𝜔𝑡−1 

The mean function is applied in the following manner: 

𝐸[∇𝑦𝑡] = 𝐸[𝛽1 + 𝜔𝑡 + 𝑤𝑡−1] = 𝛽1 + 𝐸[𝜔𝑡] − 𝐸[𝜔𝑡−1] = 𝛽1 

𝛽1 is independent of time t and is thus stationary, which is also implicit using the autocovariance 
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function: 

𝛾∇𝑥𝑡(𝑡 + ℎ, ℎ) = 𝛾∇𝑥𝑡(ℎ) =  cov(𝑦𝑡+ℎ, 𝑦𝑡) 

= cov(𝛽1 + 𝑦𝑡+ℎ − 𝑦𝑡+ℎ−1, 𝛽1 + 𝑦𝑡 − 𝑦𝑡−1 

= cov(𝑦𝑡+ℎ − 𝑦𝑡+ℎ−1, 𝑦𝑡 − 𝑦𝑡−1) 

= cov(𝑦𝑡+ℎ, 𝑦𝑡) − cov(𝑦𝑡+ℎ, 𝑦𝑡−1) − cov(𝑦𝑡+ℎ−1, 𝑦𝑡) + cov(𝑦𝑡+ℎ−1, 𝑦𝑡−1) 

= 𝛾𝑦(ℎ) − 𝛾𝑦(ℎ + 1) − 𝛾𝑦(ℎ − 1) + 𝛾𝑦(ℎ) 

= 2𝛾𝑦(ℎ) − 𝛾𝑦(ℎ + 1) − 𝛾𝑦(ℎ − 1) 

Differencing h shows that the autocovariance of the form 𝛾∇𝑦𝑡(ℎ) is not dependent on time t. 

Figure 3 of the sample ACF shows a slow dampening which indicates a long memory process. 

The presence of non-stationarity can be established visa vie trend alone. 

Figure 3 

Sample Autocorrelation Function (ACF) Plot for Litecoin’s Adjusted Price 

Note. A lag of 100 is enough to show these effects but is by no means the maximum lag for the 

series. Shumway & Stoffer (2019) present a basic equation for the expression of a long memory 

process as a byproduct of differencing fractional values where 

(1 − 𝐵)𝑑𝑥𝑡 = 𝜔𝑡, 

asserting that “time series data tend to exhibit sample autocorrelations that are not necessarily 
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large (as in the case of d = 1), but persist for a long time” (p. 186).  

Figure 4 shows the effects of differencing the Litecoin time series; the remaining residuals are 

relegated to white noise, taking on a constant zero mean. 

Figure 4 

Litecoin Continuous Compound Return (2014 – 2021)  

 

 

 

 

 

Note. A continuous compound return is the direct result of differencing. The red line shows the 

mean annualized return of approximately 14%. This can be likened to the Dow-Jones Industrial 

Average, differenced data with a mean of zero and stationary property. 

While differencing can be effectively performed by a diff() function call on the log of the 

time series, an alternative method is prescribed whereby the differenced time series is a function 

of adjusted prices divided by the open prices minus one; the graphical output produced by this 

function is the same. Differencing the log of adjusted prices produces continuous compound 

returns over time. This adjusts the overall model to an order and magnitude of MA(1) whereby 

the ACF cuts off after lag 1. Establishment of a strategical analytics framework is key in 

forecasting the annualized returns of the Litecoin cryptocurrency. However, prior to 
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commencing the analytics process it is important to establish the null and alternative hypotheses 

for the mean of returns r as follows: 

𝐻0: 𝜇𝑟 = 14%; 𝐻𝑎: 𝜇𝑟 > 14%. 

ARIMA Models  

Combining AR(1) with MA(1) produces an autoregressive integrated moving average 

model of ARIMA(1,0,1): 

𝑦𝑡 = 𝑐 + 0.341𝑦𝑡−1 − 0.351𝜀𝑡−1 

where 𝑐 = 0.1457 × (1 − 0.3409) = 0.096 and 𝜀𝑡 is white noise with a standard deviation of 

5.725. Subsequently, six ARIMA models are tested for performance visa vie AIC, initializing 

with ARIMA(0,1,0), a random walk with a zero mean: 

∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 

𝑦𝑡 − 𝑦𝑡−1 = 𝜀𝑡 , 𝑦𝑡 = 𝑦𝑡−1 + 𝜀 

The Akaike Information Criterion (AIC) score is but one method deployed for model selection 

where the model with the lowest score is optimum. Table 2 (in the supplementary materials 

section) shows the corresponding AIC scores commensurate with each respective ARIMA 

model. From this vantage point alone, ARIMA(3,1,2) can be selected and represented in the 

following equation: 

𝑦𝑡 = 0.663𝑦𝑡−1 − 0.008𝑦𝑡−2 − 0.040𝑡−3 − 1.664𝜀𝑡−1 + 0.664𝜀𝑡−2 + 𝜀𝑡 

where 𝑐 = 0 and 𝜀𝑡 is white noise with a standard deviation of 0.058.   

 At this juncture, operating from a strictly empirical standpoint and structure necessitates 

the use of an all-encompassing automatic ARIMA model that can determine its own set of 

unique and optimal parameters. Within the construct of the R environment, the auto.arima() 

function looks almost identical to that of the standard arima() function, with one exception; the 

“auto ARIMA takes into account the AIC and BIC values generated…to determine the best 
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combination of parameters” (Singh, 2018).  Moreover, “it should be noted that the AIC statistic 

is designed for preplanned comparisons between models (as opposed to comparisons of many 

models during automated searches)” (Kuhn & Johnson, 2016, p. 493) and is thus used to select 

an optimal model (ARIMA(3,1,3)).  

GARCH Model  

The GARCH model is a response to the volatility shocks of the market, which requires 

thousands of observations. The generalized form of the GARCH(1,1) model is expressed as 

follows: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝛼𝑡−1

2 + 𝛽1𝜎𝑡−1
2 .

The forecast for the GARCH(1,1) model originates at time t in: 

𝜎𝑡
2(1) =  𝛼0 + 𝛼1𝛼𝑡

2 + 𝛽1𝜎𝑡
2

and proceeds ℓ steps ahead in the following manner: 

𝜎𝑡
2(ℓ) = 𝛼0 + (𝛼1 + 𝛽1)𝜎𝑡

2(ℓ − 1), ℓ = 2, ⋯

𝜎2 = 𝛼0 (1 − 𝛼1 − 𝛽1)⁄

[𝜎𝑡
2(ℓ) − 𝜎2] = (𝛼1 + 𝛽1)ℓ−1[𝜎𝑡

2(1) − 𝜎2].

Thus, as ℓ → ∞, 𝜎𝑡
2(ℓ) → 𝜎2, where 𝛼1 + 𝛽1 < 1. When the volatility forecast approaches

infinity, the long-term variance at time t approaches infinity in the same manner. This is 

conditional upon the presence of the persistence of volatility being less than 1. Thus, “the speed 

of mean reverting to the long-term variance can also be measured by the half-life ℓ =

log(0.5) / log(𝛼1 + 𝛽1)” (Tsay, 2013, p. 245). The half-life is the amount of time that it takes for

half of the volatility to diminish and revert to the mean—in essence, how long Litecoin’s 

volatility will endure in a post-shock condition prior to reverting to its natural state. Whereas 

there are 252 trading days in the stock market, cryptocurrencies operate continuously. Therefore, 

volatility is annualized for h-period returns and is defined by 𝜎𝑡,ℎ,𝑎 = √365 ℎ⁄ 𝜎𝑡,ℎ, where a refers 
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to annualized volatility and h refers to number of days. Figure 5 represents these volatility shocks 

which are calculated by the standard deviation of the return over annualized time. 

Figure 5

Litecoin – Annualized Volatility 

 

Volatility shocks are observed throughout the series; year 2017 notably shows one of the 

highest peaks. Analysis of these shocks is conducted with the rugarch package (v1.4-4; 

Ghalanos, 2020). GARCH is introduced as a response to these stochastic volatility shocks where 

GARCH(1,1) is the best model fit according to the conditional variable dynamics of the ensuing 

summary output. However, it is important to note that the mean estimate of 0.000735 with a 

standard error of 0.000524 bears no statistical significance at a p-value of 0.160717 where 𝛼 =

0.05. The AIC and BIC are relatively low, expressing values of -3.506 and -3.488, respectively. 

More importantly, the weighted Ljung-Box test on standardized residuals shows corresponding 

lags with statistically significant p-values. Furthermore, the Adjusted Pearson Goodness-of-Fit 

“calculates the chi-squared goodness of fit test, which compares the empirical distribution of the 
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standardized residuals with the theoretical ones from the chosen density” (Ghalanos, 2020). 

Herein, “the null hypothesis is that the conditional error term follows a normal distribution” 

(Tsafack, 2021). Each respective value presented is statistically significant, thereby rejecting a 

normal distribution (the null hypothesis) and corroborating the originally presented skewed 

Student’s t-distribution. Moreover, additional evidence for GARCH-like behavior is provided 

since the ACF and PACF in Figure 6 below are both tapering off incrementally.

Figure 6

Litecoin Annualized Volatility - ACF and PACF 

Note. The ACF and PACF is shown at a maximum lag of 500 to highlight the gradual tailing off 

effect. However, the code corresponding to these plots in the Appendix is not set to a maximum 

lag, as it “defaults to √𝑛 + 10 unless 𝑛 < 60” (Stoffer & Poison, 2021). 

Summarized Results 

Fitting the GARCH(1,1) model to Litecoin’s return data uncovers some interesting 
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findings. For example, whereas the presence of stochastic volatility has been established through 

the lens of annualized returns, its persistence is highlighted visa vie Figure 7 where the

conditional standard deviation is plotted versus returns. Two prominent shocks are observed in 

early 2018 and 2020.  

Figure 7

Conditional Standard Deviation (vs |Returns|) 

Note. The volatility trajectory is annualized through the end of 2021, expressing a standard 

deviation on return of approximately 0.058. 

Revisiting the ARIMA(3,1,3) model is an important step before exploring predictive 

modeling. In so doing, additional findings are presented that are consistent with selection of an 

optimal model. The AIC score (-7446) is among the lowest of all the ARIMA models presented 

shown thus far. Table 2 shows that ARIMA(3,1,2) is slightly higher (-7453) by 7 units 

(supplementary materials). Moreover, the summary output table shows that all components of the 

moving average model are statistically significant where 0 ≤ 𝑝 ≤ 0.002. ARIMA(3,1,3) is 

represented in the following equation:  
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𝑦𝑡 = −0.181𝑦𝑡−1 + 0.567𝑦𝑡−2 − 0.002𝑦𝑡−3 − 0.816𝜀𝑡−1 − 0.722𝜀𝑡−2 + 0.540𝜀𝑡−3 + 𝜀𝑡

where 𝑐 = 0 and 𝜀𝑡 is white noise with a standard deviation of 0.058.

Figure 8 shows the ensuing graphical output for this model which contains the diagnostics for the

standardized residual, ACF, Q-Q and Ljung-Box statistic.  

Figure 8

ARIMA(3,1,3) Diagnostics 

Note. The standardized residuals report trend-less and white noise-like behavior. The ACF of the 

residuals exhibits a sharp decline after lag 1, corroborating its MA(1) behavior. Moreover, the 

Normal Q-Q plot of the standardized residuals operates off the assumption of normality, albeit 

with a reasonable number of outliers at both tails. Lastly, the p-values shown in the Ljung-Box 

statistic plot are below the threshold of 0. Overall, the model has a good fit.  

The modeling phase is complete, and an ensuing forecast of 41 days from November 30, 
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2021 is produced with a 95% confidence interval as shown in Figure 9 below. The time horizon 

(x-axis) is indexed on a numerical scale ranging from 2200-2500, where the trajectory is 

illustrated using a red color. 

Figure 9

Forecasts from ARIMA(3,1,3) Model 

Note. Forecast prediction: Once Litecoin surpasses an adjusted closing price of $400, it will drop 

below $200 and continue to fluctuate normally (as expected), reaching a maximum value of 

$253.00 within the next 41 days.  

Limitations 

Predictions are made within a 95% confidence level based on a chi-squared distribution. 

Moreover, whereas the premise behind building GARCH(1,1) is to strengthen the case for 

volatility as a function of time, it is not used to make ℓ step ahead forecasts in this paper. 

Subsequent explorations along these lines will only stand to strengthen pre-existing time series 
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analyses of similar magnitudes. Furthermore, additional data visa vie larger sample size will be 

required to perform more robust, meaningful analyses (ARIMA included). Moreover, other 

variants of the GARCH model can be considered, like the GJR-GARCH model “developed in 

1993 by Glosten, Jagannathan and Runkle” (Tsafack, 2021). One final note that is important to 

make is that the null hypothesis regarding the mean of the return warrants subsequent testing to 

establish whether it is possible to reject or fail to reject the premise that will remain at 14%.  

Conclusion 

Litecoin, one of the highly traded cryptocurrencies on the market possesses non-

stationarity and high volatility, but substantial technological and financial potential. Its high 

skewness on all price (and volume) attributes aside, its periodical peaks can cycle every 675 and 

1,350 days, which adds sentiment to a probable economic gain (thrust) in the near future. 

Differencing the time series is required, and from the tailing off of the ACF and PACF it is 

reasonable to use the ARIMA model on the cryptocurrency’s data to perform the forecast from 

the final model selection of ARIMA(3,1,3). In the next 41 days from November 30, 2021, the 

adjusted price should be fluctuating between $400 and $200 and then continue with its expected 

volatile movement.  

This paper commences with the behaviors, characteristics, and historical movements of a 

highly rated cryptocurrency. It culminates with a forecast on its adjusted return, which is a direct 

byproduct of quantitative analysis. While past performance is not indicative of future results, a 

calculated effort is made so that investors can make informed decisions backed by facts and 

figures alone. 
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Supplementary Materials 

Table 1 

Percent Variance and Change by Principal Component 

Principal Component Percent Variance Percent Change (Delta) 

1 89.35 

2 10.46 78.90 

3 0.11 10.35 

4 0.07 0.03 

5 0.01 0.06 

6 0.00 0.01 

Table 2 

ARIMA Models: Log Likelihood and AIC 

Model Sigma2 Log Likelihood AIC 

ARIMA(0,1,0) 0.006817 2825 -5647

ARIMA(1,1,0) 0.005141 3195 -6386

ARIMA(0,1,1) 0.003416 3730 -7456

ARIMA(1,1,1) 0.003416 3730 -7454

ARIMA(2,1,2) 0.003416 3730 -7450

ARIMA(3,1,2) 0.003405 3733 -7453



Appendix

Loading the Necessary Packages (Libraries)

# Pack function: install and load more than one R packages.
# Check to see if packages are installed.
# Install them if they are not,
# Then load them into the R session.

pack <- function(lib){
new.lib <- lib[!(lib %in%

installed.packages()[, "Package"])]
if (length(new.lib))

install.packages(new.lib, dependencies = TRUE)
sapply(lib, require, character.only = TRUE)

}

# usage
packages <- c('astsa', 'xts', 'tidyquant', 'quantmod', 'tidyverse', 'dplyr',

'pander', 'fpp2', 'broom', 'caret', 'factoextra', 'corrplot',
'e1071', 'rugarch')

pack(packages)

## astsa xts tidyquant quantmod tidyverse dplyr pander
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## fpp2 broom caret factoextra corrplot e1071 rugarch
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Preprocessing - Initial Steps

# get (read-in) data for the last 10 years
start = as.Date("2011-11-30") # start date
end = as.Date("2021-11-30") # end date

# data might not be available for entirety of date range
# but a 10 year look back is done to accommodate full size and scope
getSymbols(c("LTC-USD"),

src = "yahoo",
from = start,
to = end)

## [1] "LTC-USD"

1



Exploratory Data Analysis (EDA)

# cast litecoin time series into dataframe
litecoin_df <- data.frame(`LTC-USD`)
colnames(litecoin_df) <- c("Open", "High", "Low", "Close", "Volume", "Adjusted")

litecoin.ts <- tq_get("LTC-USD", from = "2011-11-30", to = "2021-11-30") %>%
select(adjusted) %>% # adjusted price (more accurate than close price)
ts(.) # turning it into a time series object
ltc_xts <- as.xts(litecoin_df)
str(litecoin_df); str(litecoin.ts)

## ’data.frame’: 2632 obs. of 6 variables:
## $ Open : num 5.09 5.07 4.69 4.33 4.26 ...
## $ High : num 5.17 5.07 4.76 4.62 4.3 ...
## $ Low : num 4.97 4.58 4.25 4.2 4.15 ...
## $ Close : num 5.06 4.69 4.33 4.29 4.25 ...
## $ Volume : num 3071840 4569260 3917450 5490660 2931220 ...
## $ Adjusted: num 5.06 4.69 4.33 4.29 4.25 ...

## Time-Series [1:2632, 1] from 1 to 2632: 5.06 4.69 4.33 4.29 4.25 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr "adjusted"

cat("Dimensions of dataset:", dim(litecoin_df)) # dimensions of dataset

## Dimensions of dataset: 2632 6

cat("There are", sum(is.na(litecoin_df)), 'missing values in the dataset. \n')

## There are 24 missing values in the dataset.

# list columns pertaining to missing values in dataframe
list_na <- colnames(litecoin_df)[ apply(litecoin_df, 2, anyNA)]; list_na

## [1] "Open" "High" "Low" "Close" "Volume" "Adjusted"

# remove missing values
litecoin_df <- litecoin_df[complete.cases(litecoin_df),]
litecoin.ts <- litecoin.ts[complete.cases(litecoin.ts),]
ltc_xts <- ltc_xts[complete.cases(ltc_xts),]

# Check for missing values after complete cases (removal)
cat("\n There are", sum(is.na(litecoin_df)), 'missing values in the dataset.\n',

'New dimensions of dataset:', dim(litecoin_df))# dimensions of dataset

##
## There are 0 missing values in the dataset.
## New dimensions of dataset: 2628 6
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At the time of the analysis, the dataset has 2628 rows and 6 columns of data.

# inspect the first and last few rows of data
head(litecoin_df, 8)

## Open High Low Close Volume Adjusted
## 2014-09-17 5.08589 5.17077 4.96595 5.05855 3071840 5.05855
## 2014-09-18 5.06543 5.06543 4.57996 4.68523 4569260 4.68523
## 2014-09-19 4.68729 4.75582 4.25435 4.32777 3917450 4.32777
## 2014-09-20 4.32920 4.61608 4.20219 4.28644 5490660 4.28644
## 2014-09-21 4.26307 4.30013 4.15499 4.24592 2931220 4.24592
## 2014-09-22 4.24593 4.41688 4.21013 4.24235 1855960 4.24235
## 2014-09-23 4.23999 4.88135 4.18887 4.74657 4661670 4.74657
## 2014-09-24 4.74420 4.74512 4.62769 4.66679 2662290 4.66679

tail(litecoin_df, 8)

## Open High Low Close Volume Adjusted
## 2021-11-23 209.3134 218.4258 205.9170 216.3890 1944651936 216.3890
## 2021-11-24 216.3625 217.8411 206.5169 209.8066 1884041986 209.8066
## 2021-11-25 212.2335 229.6452 210.9241 215.6350 1953190727 215.6350
## 2021-11-26 222.9104 224.8620 190.8467 194.8746 2690646017 194.8746
## 2021-11-27 195.5579 200.8455 191.1983 195.1744 1406618152 195.1744
## 2021-11-28 195.4146 199.8712 184.1060 199.3542 1712282909 199.3542
## 2021-11-29 199.5910 209.2916 195.7546 205.8702 1784850980 205.8702
## 2021-11-30 205.7330 218.3396 198.1463 208.0145 2122547294 208.0145

Summary Statistics

summary(litecoin_df[,6]) # summary stats of adjusted close prices

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.157 3.879 46.324 64.075 87.115 386.451

Distributions

# histogram distributions
par(mfrow = c(2,3), mar = c(2, 2, 2, 2))
options(scipen=999)

for (i in 1:ncol(litecoin_df)) {
hist(litecoin_df[,i],
xlab = names(litecoin_df[i]), ylim=c(0,1600),
main = paste(names(litecoin_df[i]), "- Histogram"),
col="gray60")

}
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# boxplot distributions
par(mfrow = c(2, 3),

mar = c(2, 2, 2, 2))

for (i in 1:ncol(litecoin_df)) {
boxplot(litecoin_df[,i],
ylab = names(litecoin_df[i]),
main = paste(names(litecoin_df[i]), "- Boxplot"), horizontal=TRUE,
col="gray")

}
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The OHLC (open, high, low, close) and adjusted prices exhibit long-tailed distributions with a right skew;
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so does the volume.
Since we are interested in evaluating Litecoin’s performance as a cryptocurrency, the final (close) price would
be intrinsically of interest; but, more importantly, the “adjusted closing price is considered to be a more
technically accurate reflection of the true value” (Bischoff, 2019).

# test skewness by looking at mean and median relationship
mean_ltc <- round(apply(litecoin_df, 2, mean, na.rm = T),0)
median_ltc <- round(apply(litecoin_df, 2, median, na.rm = T),0)
distribution<- data.frame(mean_ltc, median_ltc)
distribution$Skewness <- ifelse(mean_ltc > 2 + median_ltc, "skewed", "normal")
distribution

## mean_ltc median_ltc Skewness
## Open 64 46 skewed
## High 67 48 skewed
## Low 61 45 skewed
## Close 64 46 skewed
## Volume 1593186877 375924496 skewed
## Adjusted 64 46 skewed

# Check for exact skewness in LTC.Volume
skewValue <- apply(litecoin_df, 2, skewness, na.rm=T)
skewValue

## Open High Low Close Volume Adjusted
## 1.410603 1.453786 1.357228 1.406507 2.299834 1.406507

# Applying Box-Cox Transformation on skewed variable
trans <- preProcess(data.frame(litecoin_df), method=c("BoxCox"))
trans

## Created from 2628 samples and 6 variables
##
## Pre-processing:
## - Box-Cox transformation (6)
## - ignored (0)
##
## Lambda estimates for Box-Cox transformation:
## 0.2, 0.2, 0.2, 0.2, 0.1, 0.2

# look at and compare to transformed data
transformed <- predict(trans, data.frame(litecoin_df))
skew_transformed <- apply(transformed, 2, skewness, na.rm=T)
skew_transformed

## Open High Low Close Volume Adjusted
## -0.06181721 -0.05492312 -0.07210481 -0.06325734 -0.38318043 -0.06325734

new_skew <- data.frame(skewValue, skew_transformed)
new_skew$Skew_Variance <- ifelse(skewValue < skew_transformed, "More skewed",

"Less skewed")
new_skew
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## skewValue skew_transformed Skew_Variance
## Open 1.410603 -0.06181721 Less skewed
## High 1.453786 -0.05492312 Less skewed
## Low 1.357228 -0.07210481 Less skewed
## Close 1.406507 -0.06325734 Less skewed
## Volume 2.299834 -0.38318043 Less skewed
## Adjusted 1.406507 -0.06325734 Less skewed

Correlation Matrix

# assign correlation function call to variable
cor_ltc <- cor(litecoin_df)
# plot the correlation table (matrix)
corrplot(cor_ltc,

method="color",
col=colorRampPalette(c("yellow",

"white",
"orange"))(200),

addCoef.col = "black",
tl.col="black", tl.srt=45, type="lower")
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From the correlation matrix, it can be discerned that whereas the OHLC and adjusted prices exhibit multi-
collinearity at r = 1, their relationships with volume is much less pronounced, where 0.56 ≤ r ≤ 0.58.
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Principal Component Analysis (PCA)

# center, scale the data, and assign to PCA variable
litecoin.pca <- prcomp(litecoin_df, center = TRUE, scale. = TRUE)

# assign to variance explained variable
var_explained <- round(litecoin.pca$sdevˆ2/sum((litecoin.pca$sdev)ˆ2)*100, 4)

fviz_eig(litecoin.pca, main="Scree Plot of Six Principal Components",
xlab="Principal Components",
ylab = "Percent Variance Explained",
barcolor = "grey", barfill = "grey",
linecolor = "blue", addlabels=T,
ggtheme=theme_classic())
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Table 1: Percent Variance and Change by Principal Component

Principal Component Percent Variance Percent Change (Delta)
1 89.35
2 10.46 78.9
3 0.11 10.35
4 0.07 0.03
5 0.01 0.06
6 0 0.01
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Approximately 89.35% of the variance in the data is explained by the first principal component; thus, the
effective dimension is 1. This is supported by and demonstrated in the scree plot and the ensuing table
above. The table itself numerically demonstrates the percent variance that is explained by each respective
principal component. The scree plot visually depicts “the percentage of the total variance explained by each
component” (Kuhn & Johnson, 2016, p. 38).

# create new variable for sole purpose of plotting years on x-axis, not indices
litecoin_plot <- ts(as.vector(litecoin.ts), start=c(2014), frequency = 365)
tsplot(litecoin_plot, main='LTC Adjusted Closing Prices (2014 - 2021)',

xlab='Year', ylab='Adjusted Price (USD)') # plot the time series

LTC Adjusted Closing Prices (2014 − 2021)
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The time series shows a clear trend with several predominant peaks and troughs, at approximately 2017 - 2018
and 2020 - 2021, respectively. To mitigate (offset) the trend, differencing will be performed. Furthermore,
the autocorrelation function (ACF) and partial autocorrelation function (PACF) are examined. Whereas
ACF “measures the linear predictability of the series at time t, say xt using only the value of xs” (Shumway
& Stoffer, 2019, p. 20), the PACF does the same for a truncated lag length.

Autocorrelation Function (ACF)

ρ(s, t) = γ(s, t)√
γ(s, s)γ(t, t)

where −1 ≤ ρ(s, t) ≤ 1.

For the sample ACF, we have:

ρ x(h) = γ(x(h)
γx(0) = (Xt+h − X̄)(Xt − X̄)∑

(Xt − X̄)2

= Corr(Xt+h,Xt)

8



par(mfrow=c(2,1), oma = c(2,2,0,0) + 0.1, mar = c(1,4,3,1) + 0.1)
acf(litecoin_df$Adjusted, lag.max=100, main='Litecoin ACF and PACF for Adjusted Prices')
pacf(litecoin_df$Adjusted, lag.max=100, main='', ylab='PACF')
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Whereas the ACF gradually tapers off, the PACF cuts off after lag 1, thereby relegating this to an AR(1)
model. So we have the following:

arima(litecoin_df$Adjusted, order=c(1, 0, 0))

##
## Call:
## arima(x = litecoin_df$Adjusted, order = c(1, 0, 0))
##
## Coefficients:
## ar1 intercept
## 0.9960 64.0773
## s.e. 0.0018 30.5462
##
## sigma^2 estimated as 46.5: log likelihood = -8776.55, aic = 17559.09

(xt − µ) = ϕ1(xt−1 − µ) + ωt.

(xt − 64.0773) = 0.9960(xt−1 − 64.0773) + ωt

xt = 64.0773 − (64.0773 × 0.9960) + 0.9960xt−1 + ωt = 0.256 + 0.9960xt−1 + ωt
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Smoothing and its Effects

We plot the data for the last six years (November 2014 through November 2021).

Next, we smooth the data by introducing the simple moving average (SMA), and exponential moving average
(EMA), respectively, weighting the effects by 30 days (one full month).

chartSeries(litecoin_df, theme = chartTheme("white"))
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addEMA(30) # exponential moving average by 30 days
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Spectral Analysis Cyclical Behavior Periodogram Filters

par(mfrow=c(1,2)); ltcfreq <- mvspec(litecoin.ts,taper=0,log="no") # peaks
ltcfreq2 <- spec.pgram(litecoin.ts,taper=0,log="yes",

main ='Periodogram with CI') # graph confidence interval
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# sort the frequencies in descending order and get top 2
sort_ltcfreq <- sort(ltcfreq$spec, decreasing = TRUE)[c(1,2)]
p1 <- ltcfreq$freq[ltcfreq$spec==sort_ltcfreq[1]]; p1

## [1] 0.0007407407

p2 <- ltcfreq$freq[ltcfreq$spec==sort_ltcfreq[2]]; p2

## [1] 0.001481481
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cat('Cycles are occuring every', round(1/p1,1), 'days and ', 1/p2, 'days')

## Cycles are occuring every 1350 days and 675 days

CI <- function(peak_spec){
u <- qchisq(0.025,2)
l <- qchisq(0.975,2)

c((2*peak_spec)/l,(2*peak_spec)/u)} # confidence intervals of the peaks
CI(sort_ltcfreq[1]) # CI for peak 1

## [1] 357264.8 52054543.7

CI(sort_ltcfreq[2]) # CI for peak 2

## [1] 149449.4 21775218.9

Dominant peak is ≈ 0.0. Each of the generic confidence intervals is too wide to be of much use.

# nonparametric spectral estimation + graph the data with different tapering
par(mfrow=c(2,2))
ltcfreq_taper0 = mvspec(litecoin.ts, spans=c(2,2), log="no", taper=0)
ltcfreq_taper2 = mvspec(litecoin.ts, spans=c(2,2), log="no", taper=0.2)
ltcfreq_taper5 = mvspec(litecoin.ts, spans=c(2,2), log="no", taper=0.5)
plot(ltcfreq_taper0$freq, ltcfreq_taper0$spec, log="y", type="l",

ylab="adjusted-spectrum", xlab="frequency", panel.first=Grid())
lines(ltcfreq_taper2$freq, ltcfreq_taper2$spec, col=2)
lines(ltcfreq_taper5$freq, ltcfreq_taper5$spec, col=4)
abline(v=1/16, lty=2)
legend("topright", legend=c("no taper", "20% taper", "50% taper"), lty=1,

col=c(1,2,4), bty="n")
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By comparing the different tapering, we can see that having more tapering can slightly decrease the degrees
of freedom and enhances the center of the data relative to the extremities. Thus we choose the smoothing
with 50% tapering.
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Preprocessing - Differencing

diff_ltc_1 <- diff(log(litecoin_plot))*100
tsplot(diff_ltc_1, main='Litecoin Continuous Compound Return',ylab='Return in %')
abline(h=mean(diff_ltc_1),col=6); cat('Mean return:', mean(diff_ltc_1))
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## Mean return: 0.1414742

This can be likened to the Dow-Jones Industrial Average (DJIA), which is the differenced data, and shows
a mean of zero; this gives it the stationary property.

par(mfrow=c(2,1), oma = c(1,1,0,0) + 0.09, mar = c(1,4,3,0.5) + 0.08)
acf(diff_ltc_1, lag.max=500, main = 'Differenced Litecoin Adjusted Prices')
pacf(diff_ltc_1, lag.max=500, main='', ylab='PACF')
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arima(diff_ltc_1, order=c(1,0,1)) # Introductory ARIMA model (1,0,1)

##
## Call:
## arima(x = diff_ltc_1, order = c(1, 0, 1))
##
## Coefficients:
## ar1 ma1 intercept
## 0.3409 -0.3514 0.1457
## s.e. 0.4836 0.4728 0.1099
##
## sigma^2 estimated as 32.77: log likelihood = -8310.97, aic = 16629.95

yt = c + 0.3409yt−1 − 0.3514εt−1

where c = 0.1457 × (1 − 0.3409) = 0.096031 and εt is white noise with a standard deviation of
√

σ2 =√
32.77 = 5.725.

par(mfrow=c(2,1))
litecoin_df$Return <- litecoin_df$Close/litecoin_df$Open-1
litecoin_df$Adj_Return <- litecoin_df$Adjusted/litecoin_df$Open-1

# plot return
tsplot(litecoin_df$Return, main='Litecoin Return Over Time: 2014-2021',

ylab='Return')
# plot adj.return
tsplot(litecoin_df$Adj_Return, main='Litecoin Adjusted Return: 2014-2021',

ylab='Adjusted Return')
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ARIMA Models

By differencing the data, we remove the trend, and can use the ARIMA model.

At this stage, we can conclude our exploratory data analysis with a six year historical pricing inquiry.
Volatility shocks must be considered.

Cryptocurrency is a relatively new, ever-changing and ever-evolving financial technology. For this reason,
we will take more conservative approach by forecasting five years out.

# create a few models and compare the AIC scores in a table
arima010 <- arima(litecoin_df$Adj_Return,order=c(0,1,0))
arima110 <- arima(litecoin_df$Adj_Return,order=c(1,1,0))
arima011 <- arima(litecoin_df$Adj_Return,order=c(0,1,1))
arima111 <- arima(litecoin_df$Adj_Return,order=c(1,1,1))
arima212 <- arima(litecoin_df$Adj_Return,order=c(2,1,2))
arima312 <- arima(litecoin_df$Adj_Return,order=c(3,1,2))

# find AIC for each model and assign to variable
sigma_2 <- c(arima010$sigma2, arima110$sigma2, arima011$sigma2, arima111$sigma2,

arima212$sigma2, arima312$sigma2)

AIC <- c(arima010$aic, arima110$aic, arima011$aic, arima111$aic, arima212$aic,
arima312$aic)

LOG <- c(arima010$loglik, arima110$loglik, arima011$loglik, arima111$loglik,
arima212$loglik, arima312$loglik)

rownames <- c('ARIMA(0,1,0)', 'ARIMA(1,1,0)', 'ARIMA(0,1,1)', 'ARIMA(1,1,1)',
'ARIMA(2,1,2)', 'ARIMA(3,1,2)')

# place the data into a table
tableARIMA <- data.frame(rownames, sigma_2, LOG, AIC)

colnames(tableARIMA) <- c('Model', 'Sigmaˆ2', ' Log Likelihood', 'AIC')
tableARIMA %>% pander(style ='grid',

caption='ARIMA Models: Log Likelihood and AIC')

Table 2: ARIMA Models: Log Likelihood and AIC

Model Sigmaˆ2 Log Likelihood AIC
ARIMA(0,1,0) 0.006817 2825 -5647
ARIMA(1,1,0) 0.005141 3195 -6386
ARIMA(0,1,1) 0.003416 3730 -7456
ARIMA(1,1,1) 0.003416 3730 -7454
ARIMA(2,1,2) 0.003416 3730 -7450
ARIMA(3,1,2) 0.003405 3733 -7453

sarima(litecoin_df$Adj_Return, 3,1,2, details = FALSE) # the model with lowest AIC score

## $fit
##
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## Call:
## arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),
## xreg = constant, transform.pars = trans, fixed = fixed, optim.control = list(trace = trc,
## REPORT = 1, reltol = tol))
##
## Coefficients:
## ar1 ar2 ar3 ma1 ma2 constant
## 0.6628 -0.0082 0.0398 -1.6641 0.6641 0
## s.e. 0.1113 0.0234 0.0200 0.1114 0.1115 0
##
## sigma^2 estimated as 0.003405: log likelihood = 3732.76, aic = -7451.52
##
## $degrees_of_freedom
## [1] 2621
##
## $ttable
## Estimate SE t.value p.value
## ar1 0.6628 0.1113 5.9542 0.0000
## ar2 -0.0082 0.0234 -0.3504 0.7261
## ar3 0.0398 0.0200 1.9952 0.0461
## ma1 -1.6641 0.1114 -14.9324 0.0000
## ma2 0.6641 0.1115 5.9564 0.0000
## constant 0.0000 0.0000 0.0286 0.9772
##
## $AIC
## [1] -2.836511
##
## $AICc
## [1] -2.836499
##
## $BIC
## [1] -2.82086

yt = 0.6628yt−1 − 0.0082yt−2 + 0.0398t−3 − 1.6641εt−1 + 0.6641εt−2 + εt

where c = 0 and εt is white noise with a standard deviation of
√

σ2 =
√

0.003405 = 0.058352.

Optimal ARIMA Model

ltc.arima_opt <- tq_get("LTC-USD", from ="2015-01-01", to = "2021-09-30") %>%
select(adjusted) %>% # adjusted price (more accurate than close price)
ts(.) # turning it into a time series object
crypto_model <- auto.arima(ltc.arima_opt); crypto_model # Optimal ARIMA model

## Series: ltc.arima_opt
## ARIMA(3,1,3)
##
## Coefficients:
## ar1 ar2 ar3 ma1 ma2 ma3
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## 0.6688 0.7767 -0.7404 -0.6954 -0.7546 0.7909
## s.e. 0.5612 0.3431 0.1273 0.5243 0.3831 0.1779
##
## sigma^2 estimated as 46.41: log likelihood=-8208.97
## AIC=16431.93 AICc=16431.98 BIC=16472.6

# forecast the next 41 closing prices, with a 95% CI
ltc_forecast <- forecast(crypto_model, 41, level = c(.95)); ltc_forecast

## Point Forecast Lo 95 Hi 95
## 2466 152.6847 139.33254 166.0369
## 2467 152.8352 134.20225 171.4681
## 2468 153.4791 130.72922 176.2291
## 2469 154.3697 127.92189 180.8175
## 2470 155.3541 125.38883 185.3193
## 2471 156.2272 122.81387 189.6405
## 2472 156.9163 120.12849 193.7040
## 2473 157.3264 117.25122 197.4016
## 2474 157.4894 114.26737 200.7113
## 2475 157.4067 111.20322 203.6101
## 2476 157.1743 108.18792 206.1606
## 2477 156.8340 105.26026 208.4077
## 2478 156.4871 102.52114 210.4531
## 2479 156.1629 99.97227 212.3535
## 2480 155.9287 97.66111 214.1962
## 2481 155.7770 95.54545 216.0086
## 2482 155.7337 93.62908 217.8384
## 2483 155.7605 91.84472 219.6762
## 2484 155.8570 90.17816 221.5358
## 2485 155.9744 88.56290 223.3858
## 2486 156.1080 86.99076 225.2253
## 2487 156.2171 85.41387 227.0203
## 2488 156.3070 83.84153 228.7724
## 2489 156.3528 82.24802 230.4576
## 2490 156.3725 80.65770 232.0873
## 2491 156.3547 79.05945 233.6500
## 2492 156.3242 77.48299 235.1654
## 2493 156.2754 75.92120 236.6296
## 2494 156.2322 74.40000 238.0644
## 2495 156.1880 72.90904 239.4670
## 2496 156.1611 71.46629 240.8559
## 2497 156.1407 70.05638 242.2250
## 2498 156.1389 68.69022 243.5875
## 2499 156.1418 67.34965 244.9339
## 2500 156.1574 66.04200 246.2727
## 2501 156.1714 64.74976 247.5931
## 2502 156.1908 63.48003 248.9015
## 2503 156.2031 62.21833 250.1879
## 2504 156.2160 60.97316 251.4587
## 2505 156.2198 59.73354 252.7060
## 2506 156.2232 58.50920 253.9372
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# actual prices used for plot below
actual_price <- tq_get("LTC-USD", from = "2015-01-01", to = "2021-11-30") %>%

select(adjusted) %>% ts(.)
# Plotting forecasted prices against the actual prices
autoplot(ltc_forecast, xlab='Time (Indexed)',ylab=('Litecoin Adjusted Price')) +

autolayer(window(actual_price, start = 2300), size=0.8) +
theme_classic() +
theme(legend.position = "") +
ylim(0, 500)+
coord_cartesian(xlim = c(2200,2510))
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Forecasts from ARIMA(3,1,3)

Diagnostics for Optimal ARIMA Model

sarima(litecoin_df$Adj_Return, 3,1,3)

## initial value -2.493863
## iter 2 value -2.715988
## iter 3 value -2.764973
## iter 4 value -2.808328
## iter 5 value -2.819179
## iter 6 value -2.820811
## iter 7 value -2.823961
## iter 8 value -2.830462
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## iter 9 value -2.834061
## iter 10 value -2.836192
## iter 11 value -2.837421
## iter 12 value -2.837597
## iter 13 value -2.837726
## iter 14 value -2.837759
## iter 15 value -2.837770
## iter 16 value -2.837810
## iter 17 value -2.837810
## iter 18 value -2.837811
## iter 19 value -2.837844
## iter 20 value -2.837855
## iter 21 value -2.837953
## iter 22 value -2.838398
## iter 23 value -2.838680
## iter 24 value -2.838877
## iter 25 value -2.839033
## iter 26 value -2.839360
## iter 27 value -2.839747
## iter 28 value -2.840184
## iter 29 value -2.840496
## iter 29 value -2.840496
## iter 30 value -2.840544
## iter 30 value -2.840544
## iter 31 value -2.840552
## iter 31 value -2.840552
## iter 31 value -2.840552
## final value -2.840552
## converged
## initial value -2.838511
## iter 2 value -2.838563
## iter 3 value -2.838716
## iter 4 value -2.838742
## iter 5 value -2.838783
## iter 6 value -2.838788
## iter 7 value -2.838790
## iter 8 value -2.838792
## iter 9 value -2.838795
## iter 10 value -2.838799
## iter 11 value -2.838800
## iter 12 value -2.838801
## iter 13 value -2.838801
## iter 14 value -2.838802
## iter 15 value -2.838804
## iter 16 value -2.838809
## iter 17 value -2.838809
## iter 18 value -2.838811
## iter 19 value -2.838818
## iter 20 value -2.838818
## iter 21 value -2.838819
## iter 22 value -2.838819
## iter 23 value -2.838824
## iter 24 value -2.838833
## iter 25 value -2.838850
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## iter 26 value -2.838878
## iter 27 value -2.838972
## iter 28 value -2.839057
## iter 29 value -2.839191
## iter 30 value -2.839218
## iter 31 value -2.839286
## iter 32 value -2.839286
## iter 33 value -2.839286
## iter 34 value -2.839291
## iter 35 value -2.839292
## iter 36 value -2.839292
## iter 37 value -2.839294
## iter 38 value -2.839297
## iter 39 value -2.839305
## iter 40 value -2.839314
## iter 41 value -2.839324
## iter 42 value -2.839329
## iter 43 value -2.839329
## iter 43 value -2.839329
## iter 43 value -2.839329
## final value -2.839329
## converged
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## Call:
## arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),
## xreg = constant, transform.pars = trans, fixed = fixed, optim.control = list(trace = trc,
## REPORT = 1, reltol = tol))
##
## Coefficients:
## ar1 ar2 ar3 ma1 ma2 ma3 constant
## -0.1813 0.5661 -0.0023 -0.8161 -0.7215 0.5399 0
## s.e. 0.2028 0.1715 0.0203 0.2014 0.1493 0.1709 0
##
## sigma^2 estimated as 0.003412: log likelihood = 3731.37, aic = -7446.73
##
## $degrees_of_freedom
## [1] 2620
##
## $ttable
## Estimate SE t.value p.value
## ar1 -0.1813 0.2028 -0.8941 0.3713
## ar2 0.5661 0.1715 3.3019 0.0010
## ar3 -0.0023 0.0203 -0.1111 0.9116
## ma1 -0.8161 0.2014 -4.0531 0.0001
## ma2 -0.7215 0.1493 -4.8315 0.0000
## ma3 0.5399 0.1709 3.1597 0.0016
## constant 0.0000 0.0000 0.0777 0.9381
##
## $AIC
## [1] -2.834691
##
## $AICc
## [1] -2.834675
##
## $BIC
## [1] -2.816804

yt = −0.1813yt−1 + 0.5661yt−2 − −0.0023yt−3 − 0.8161εt−1 − 0.7215εt−2 + 0.5399εt−3 + εt

where c = 0 and εt is white noise with a standard deviation of
√

σ2 =
√

0.003412 = 0.05841233.

• Standard Residuals: trend-less and white noise-like.

• ACF of Residuals: cuts off after lag 1 indicating its MA behavior.

• Normal Q-Q Plot of Std Residuals: assumption of normality is reasonable w/ some outliers at the tails.

• The p-values for Ljung-Box statistic: all p-values are under 0.0, indicating Q-Statistic is insignificant
which means our model may fit really nicely.

21



Calculate Annualized Volatility

return = CalculateReturns(ltc_xts$Adjusted)
return = return[-1,]
chart.RollingPerformance(R = return, FUN="sd.annualized", scale=365, width=12,

main="LTC-USD Annualized Volatility")
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volatility <- sd(return)
rolling_window <- sqrt(365)*sd(return["2021"])

rownames <- c('Metric')

table_vol<- data.frame(rownames, volatility, rolling_window)
colnames(table_vol)<-c(' ','Annualized Volatility', 'Rolling Window Volatility')
table_vol %>% pander(style ='grid', caption='Litecoin Volatility of Return')

Table 3: Litecoin Volatility of Return

Annualized Volatility Rolling Window Volatility
Metric 0.05838 1.189
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acf2(return, main='Litecoin Annualized Volatility - ACF and PACF')
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## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## ACF 0 -0.01 0.01 0.06 -0.02 0.09 -0.03 -0.05 0 0.00 0.02 -0.03 0
## PACF 0 -0.01 0.01 0.06 -0.02 0.09 -0.03 -0.05 0 -0.01 0.03 -0.03 0
## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
## ACF 0.02 0.02 0.01 0.04 -0.01 0.04 0.00 -0.01 -0.01 0.02 0 0.06
## PACF 0.03 0.02 0.01 0.04 0.00 0.04 -0.01 -0.02 -0.01 0.01 0 0.06
## [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
## ACF 0.02 0.01 0.01 -0.01 -0.01 0.02 -0.01 0.02 0.02 0.00 -0.01 0.00
## PACF 0.02 0.02 0.01 -0.02 -0.01 0.01 -0.01 0.03 0.02 0.01 -0.01 -0.01
## [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]
## ACF -0.01 0.01 0 0.02 0.03 -0.02 -0.01 0.02 -0.03 -0.01 0.02 -0.02
## PACF -0.01 0.00 0 0.02 0.02 -0.02 -0.02 0.01 -0.03 -0.01 0.01 -0.01
## [,50] [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61]
## ACF 0 -0.04 -0.03 -0.01 0.03 0.01 0.01 -0.01 0.01 0.06 0.00 0
## PACF 0 -0.05 -0.03 -0.01 0.03 0.02 0.01 0.00 0.01 0.05 -0.01 0
## [,62]
## ACF 0.02
## PACF 0.03

From the graph above, we can see that the annualized volatility is throughout the entire history of existence
of LTC, with various magnitudes through different months. This leading to GARCH/conditional volatility.
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GARCH Model

model1 = ugarchspec(mean.model = list(armaorder = c(0,0)),
variance.model = list(model = "sGARCH", garchorder=c(1,1)),
distribution.model='sstd')

##############################################
# model fitting
model_fitting=ugarchfit(data = return, spec = model1, out.sample=20)
model_fitting

##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : sGARCH(1,1)
## Mean Model : ARFIMA(1,0,1)
## Distribution : sstd
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu 0.000735 0.000524 1.4027 0.160717
## ar1 0.418107 0.157935 2.6473 0.008113
## ma1 -0.497210 0.150026 -3.3142 0.000919
## omega 0.000016 0.000007 2.2844 0.022348
## alpha1 0.097471 0.011706 8.3264 0.000000
## beta1 0.901529 0.013195 68.3219 0.000000
## skew 1.067920 0.023746 44.9724 0.000000
## shape 3.018354 0.128460 23.4965 0.000000
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu 0.000735 0.000551 1.3349 0.181904
## ar1 0.418107 0.166875 2.5055 0.012228
## ma1 -0.497210 0.158516 -3.1367 0.001709
## omega 0.000016 0.000013 1.2280 0.219459
## alpha1 0.097471 0.015074 6.4663 0.000000
## beta1 0.901529 0.023431 38.4755 0.000000
## skew 1.067920 0.023843 44.7894 0.000000
## shape 3.018354 0.146389 20.6187 0.000000
##
## LogLikelihood : 4577.366
##
## Information Criteria
## ------------------------------------
##
## Akaike -3.5055
## Bayes -3.4875
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## Shibata -3.5055
## Hannan-Quinn -3.4989
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 12.05 0.00051805882
## Lag[2*(p+q)+(p+q)-1][5] 17.01 0.00000000000
## Lag[4*(p+q)+(p+q)-1][9] 20.75 0.00000002785
## d.o.f=2
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.03717 0.8471
## Lag[2*(p+q)+(p+q)-1][5] 0.13202 0.9967
## Lag[4*(p+q)+(p+q)-1][9] 0.21580 0.9999
## d.o.f=2
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[3] 0.05465 0.500 2.000 0.8152
## ARCH Lag[5] 0.12590 1.440 1.667 0.9818
## ARCH Lag[7] 0.16175 2.315 1.543 0.9982
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 19.2766
## Individual Statistics:
## mu 0.11840
## ar1 0.07957
## ma1 0.08344
## omega 1.70341
## alpha1 1.67979
## beta1 2.04314
## skew 0.12408
## shape 6.02957
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.89 2.11 2.59
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 1.4538 0.1461
## Negative Sign Bias 0.2108 0.8330
## Positive Sign Bias 1.2293 0.2191
## Joint Effect 3.3001 0.3476
##
##
## Adjusted Pearson Goodness-of-Fit Test:
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## ------------------------------------
## group statistic p-value(g-1)
## 1 20 37.41 0.007046
## 2 30 54.32 0.002969
## 3 40 56.28 0.036107
## 4 50 69.24 0.029979
##
##
## Elapsed time : 1.080804

##############################################

# plot
plot(model_fitting,which="all")

##
## please wait...calculating quantiles...
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par(mfrow=c(2,1),
oma = c(1.5,0.5,0,0) + 0.10,
mar = c(5,4,3,2) -0.10)

plot(model_fitting, which=2)

##
## please wait...calculating quantiles...

plot(model_fitting, which=3)
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