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Abstract

Cryptocurrency and blockchain are often synonymous, but over the last ten years each unique yet
non distinct entity has staked a claim into the world of financial technology—a territory riddled
with numerical puzzles; blending the art of predicting future results and seasonality with the
science of time series projections hinges on a few important notions. Past performance is not
indicative of future results, though it is useful in establishing trajectories. Investors and
speculators alike can leverage the power of predictive analytics to establish trends on an ever-
changing, ever-evolving domain that will remain relevant into the distant future. This paper aims
to provide more than a cursory analysis of the behaviors and patterns of Litecoin (LTC) over the
last decade, leveraging seasonality of the autoregressive integrated moving average model to
forecast a sound and proper price trajectory that will give prospective investors a healthy outlook
for future growth.

Keywords: time series analysis, ARIMA, GARCH, Litecoin, cryptocurrency, forecast,

volatility, R programming
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Background: LTC Forecast - Variations on the Autoregressive Moving Average Model

2009 was an impactful year. An economic recession was underway, Barack Obama made
history as the first African American President to be inaugurated into office, and Bitcoin (the
world’s first cryptocurrency) launched a new era in financial technology known as blockchain.
Since then, the market has witnessed a plethora of rapidly expanding offshoots of this
technology, scaled to provide encrypted solutions to managing smart contracts and currency
worldwide. Litecoin, one such cryptocurrency was launched as a peer-to-peer smart contract
provider (digital currency) in 2011 by a computer scientist named Charlie Lee. To this day, while
most people remain skeptical of the benefits of investing in cryptocurrencies at large, one cannot
doubt its rapid expansion and integration into the financial markets. Litecoin started trading at
roughly $3.00 (USD) per coin and is now listed as one of the top cryptocurrency providers on the
market.

While cryptocurrencies are part of a relatively new landscape within the context of
financial markets, it is difficult to neglect their efficacy in producing returns on investments,
decentralized systems, and secure financial transactions. Every investment carries with it a
degree (standard deviation) of risk, be it a stock, mutual fund, or call option. Assessing that risk
or volatility need not be relegated to the confines of a client-fiduciary relationship with an
investment firm. For example, making informed decisions from a mathematically oriented
vantage point can make the difference between calculated arbitrage and gambling. Litecoin was
established to be complementary to Bitcoin, where it “can be used for smaller amounts of money
and have lower fees” (SFOX, 2015). For prospective investors that are looking to diversify their
portfolios in an evolving market where the future knows no limits, forecasting its potential and
entertaining the idea or notion that this can create a possible economic boom (in the long run) is

at a minimum, a worthwhile endeavor.
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Literature Review
Existing and Alternative Methods

Cryptocurrencies exhibit peaks and troughs in the span of their continuously fluctuating
financial life cycles. Despite the approach in analyzing this data, the principles of inherent noise,
non-stationarity, and volatility hold true to these time series. Whereas from a machine learning
perspective principal component analysis helps reduce the number of dimensions in the training
set of data, Gidea et al. (2020) impose PCA on clustered data; this is done to illustrate log
transformed price projections from a graphical rendering standpoint alone. Omitting statistical
assumptions from modeling is commensurate with removing the inherent bias-variance trade-off
structure that abounds. This introduces the geometric method of “topological data analysis
(TDA)” (Gidea et al., 2020, p. 1), which helps leverage the unsupervised, non-parametric
learning methodology of the k-means clustering landscape. However, Gidea et al. (2020)
concede the necessity of summarizing statistical output following the fitting of generalized
autoregressive conditionally heteroskedastic (GARCH) models.

Moreover, it is noted that “statistical properties of such assets show...distinctly non-
stationary behavior” (pp. 9-10). This warrants logarithmic transformation of the asset (i.e.,
Litecoin) in conjunction with differencing of the volatility shocks, which translate to L!-norms of
the persistence landscapes as functions of TDA.

Forecasting Prices with R

Paul & Sadath (2021) make the case for using R versus Python in forecasting
cryptocurrency time series for its relative novelty and reliability in producing statistical output. A
short yet effective primer is given on blockchain technology—the instrumental force of smart
contracts behind a network of distributed and decentralized ledgers used “to trade digital

currency or tokens” (Paul & Sadath, 2021, p. 286). Bitcoin effectively instantiates the digital
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currency market, creating exponential price hikes through latter 2017, causing it to lose 70% of
its value by early 2018 (p. 287). Suggestions for usage of deep learning models are made (i.e.,
bagging and stacking), citing ensemble methods as an “effective methodology to forecast
cryptocurrency prices” (p. 287) and Twitter sentiment analysis. However, the predominant focus
stays with time series analysis using the Prophet forecasting library in R, which can forecast
“time series data based on additive model, in which non-linear trends are fit with yearly, weekly,
and daily seasonality” (p. 288).

Moreover, recommendations for using autoregressive independent moving average
(ARIMA), GARCH, and neural network autoregression (NNAR) models are made, citing better
performance with NNAR with less volatility. However, “in case of extreme volatility ARIMA
models show more accurate results” (p. 288). A cursory comparison of Bitcoin (BTC) prices
with those of Ethereum (ETH) using Yahoo finance from 2015 until 2019 sets precedence for
subsequent time series analyses for other cryptocurrencies to follow suit. Whereas establishing
trends inherently necessitates a differencing of at least the first order, such a recommendation is
not provided; albeit a log transformation of closing prices is noted wherein a one year out
forecast is made.

Forecasting Comparison by Bayesian Time-Varying Volatility Models

Bohte and Rossini (2019) have contributed to a fine analysis of forecasting comparisons
of cryptocurrencies using multiple Bayesian time-varying volatility models. Vector
Autoregressive (VAR) models are generally used for empirical macroeconomic applications, and
in this case, the Bayesian approach contains the stochastic volatility specification which is
computationally tractable while possessing advantages in parameter uncertainty, computing of
probabilistic statements and estimation with many parameters (Bohte & Rossini, 2019). To gain

a better glance on if a more complex model can outperform a simple model on forecasting, a
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total of three models are used: The standard VAR model, VAR with stochastic volatility, and
VAR with GARCH.

After using a series of point and density measurements which focus on 95% confidence
intervals and Root Mean Squared Error (RMSE), the BVAR base model has shown a higher
volatility in forecasting compared to the BVAR-GARCH model. The BVAR-SV and BVARX-
SV models have the highest percentages of all the cryptocurrencies, which suggests that using
Stochastic Volatility will not give a good prediction overall using confidence intervals (Bohte &
Rossini, 2019). Since the results between the BVAR model and the BVARX model are close to
each other, there is not a clear distinction between these two and hence does not help establish a
preference for a model of choice.

Half-Life Volatility Measure

Engle and Patton (2001) define half-life as the time required for the volatility to move
halfway back towards its unconditional mean. To investigate the half-life volatility measure of
some cryptocurrencies, John et al. (2019) propose choosing two GARCH family models
(PGARCH (1, 1) and GARCH (1, 1)) with the Student’s-t distribution. After fitting the error
term of the two GARCH models into various distributions (Gaussian, Student’s-t, and
Generalized Error), the PGARCH model is selected (John et al., 2019). During the procedure, the
following tests are performed with notable results:

o The Jarque-Bera test for normality is statistically significant at the 5% alpha level for

the return, meaning the return series is not normally distributed.

o The Ljung-Box Q-statistics for the return and squared return show evidence of

autocorrelation in both the return and squared return series since Q (30) and Q2 (30)
are significant at the 5% level of significance.

o The Quantile-Quantile plot is employed to confirm that the return is not normally
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distributed, which is confirmed by the presence of outliers at the tails since the points
do not approximate the straight line.
GARCH(1,1) is proven to show non-stationarity while PGARCH(1,1) shows stationarity. Thus,
the PGARCH model is chosen to investigate the half-life volatility measure of the return of
Litecoin. The returns of the cryptocurrencies used in the paper exhibit volatility persistence and
long memory by observation of the return series. A shock in the returns of Litecoin will take six
days for it to mean revert without any further volatility (John et al., 2019). Therefore,
information pertaining to the half-life measure and volatility persistence the cryptocurrency
market is important for investors to consider.
Exploratory Data Analysis (EDA) and Initial Preprocessing Steps

Preprocessing has its own unique procedure within the context of time series analysis;
this will be discussed at length in a later section. Nonetheless, the following data cleaning steps
are discussed to establish a foundational analytics framework. The quantmod library in R is
installed, loaded, and leveraged to extract the Litecoin (LTC-USD) symbol from Yahoo Finance,
the source that is connected to this library. The data is presented as a time series object which is
subsequently converted into a data frame and assigned to its own unique variable. The dataset
contains 2,632 rows, representing the date range of September 17, 2014 through November 30,
2021, and 6 columns (variables), corresponding to open, high, low, close (adjusted prices), and
volume.

Data prior to September 17, 2014 is not available for reasons not offered by the provider.
OHLC is used to abbreviate open, high, low, close prices in United States Dollars (USD). There
are 24 missing values, which are omitted by calling a function that uses complete cases.
Incomplete price data should not be imputed (i.e., mean, median, or any other method), for a

potential loss in data integrity may result. This lends the dataset to subsequent preprocessing
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with relative ease. Examination of the OHLC price histograms and boxplots, respectively,
reveals non-normal distributions for all variables. Figure 1 uncovers these degenerate, long-tailed
distributions.

Figure 1

Litecoin Historical Prices and Volume Distributions (September 17, 2014 — November 30, 2021)
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Note. Most prices are between $0 to $100 (USD), exhibiting rightly skewed distributions.
The data is therefore pre-processed with a Box-Cox transformation with an estimated A of 0.2 for

prices and 0.1 for volume. The skewness improves considerably where

XX = X)?
B="(N_"1o3

and —0.383 < ji; < —0.055. However, this is strictly an exploratory preprocessing step to show
potential improvement in estimating a Gaussian (normal) distribution, thus, not warranting

integration into the original data frame; this is done to avoid loss of viability.
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In evaluating Litecoin’s performance, the close price may be intrinsically of interest, but
the “adjusted closing price is considered to be a more technically accurate reflection of the true
value” (Bischoff, 2019). Summarizing the data frame yields the following five number summary.
Whereas the minimum adjusted price for the last six years is $1.16, the first quartile is $3.88,
with a median of $46.32, and a mean of $64.08; the third quartile is $87.12, and the maximum
recorded price for this date range is $386.45. From the supplementary correlation matrix used to
examine the relationships between all six variables, it is discernible that whereas the OHLC
prices exhibit perfect multicollinearity at » = 1, their relationship with volume is much less
pronounced, where —0.56 < r < —0.58. The moderate correlation of r = 0.57 between the
variable of interest (adjusted price) and volume does not lend itself for omission from ensuing
analysis, nor does volume itself offer substantial influence on price. It exists to represent the full
scope and context of the dataset at large. Granted, it will not be used within the context of this
analytical endeavor. Moreover, principal component analysis (PCA) shows that 89.4% of the
variance in the data is explained by the first principal component, where “the percentage of the
total variance explained by each component” (Kuhn & Johnson, 2016, p. 38), translating to an
effective dimension of 1. This is demonstrated numerically in Table 1 (in supplemental
materials).

To graphically illustrate the historically adjusted prices, a new time series object in the
form of a vector is created for the sole purpose of avoiding the representation of indexed time on
the x-axis. Indexed time is harder to derive meaning from and defeats the purpose of graphical
parsimoniousness. Therefore, it is important to see the impact of volatility visa vie market
crashes and the corresponding years that this takes place. Furthermore, this object is placed into a
plotting variable called litecoin_plot, with a starting date of 2014 and an annual frequency of

365; this is shown in Figure 2 below.
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Figure 2

LTC Adjusted Closing Prices (2014 — 2021)

Adjusted Price

[ [
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Year

Note. Several crashes are observed (between 2017 — 2018 and 2020 — 2021).
Spectral Analysis Cyclical Behavior Periodogram Filters

An ensuing spectral analysis to determine the degree of periodicity within the data frame
is conducted because “the idea that a time series is composed of periodic components appearing
in proportion to their underlying variances is fundamental to spectral analysis” (Shumway &
Stoffer, 2019, p. 137). Two dominant peaks (0.001, 0.001) are recorded, translating to cyclical
behavior between 675 and 1,350 days. However, the confidence intervals based on the chi-
squared distribution for the first (149,449.40 to 21,775,218.90) and second (357,264.80 to
52,054,543.70) period frequencies are too wide to be of use. Additional periodogram analyses
will be required (i.e., to measure the effects of tapering), but “the periodogram as an estimator is
susceptible to large uncertainties. This happens because the periodogram uses only two pieces of

information at each frequency no matter how many observations are available” (p. 153).
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Methodology
Further examination of the Litecoin time series includes the autocorrelation function
(ACF) and partial autocorrelation function (PACF). ACF “measures the linear predictability of
the series at time t, say x; using only the value of x;” (Shumway & Stoffer, 2019, p. 20). The
PACF does the same for a truncated lag length, explaining the partial correlation between the

series its own lags. The sample ACF is defined as follows:

_ y x(h) _ (Xe4n — X)(Xt -X)
¥ x(0) XX — X)Z

x(h) = Corr(X¢4p, X¢)-

An initial overview of the data shows that whereas the ACF gradually tapers off, the PACF cuts

off after lag 1, thereby relegating the time series to the AR(1) model:

e =) =g — ) + 0 = (x, — 64.0773) = 0.9960(x,_; — 64.0773) + w;
x¢ = 0.256 + 0.996x,_; + w;

Differencing and Stationarity

Establishing non-stationarity in a time series component requires the expression of the
mean as a function of time t where E[y;] = E[By + Bit + w:] = By + B1t. Time is non-
stationary because t; # t, and u(t,) # u(t,). To mitigate the continuous fluctuations
exacerbated by predominant peaks, troughs, and general volatility of cryptocurrency market, the
year-over-year trends observed in Litecoin’s historically adjusted prices necessitate first order
differencing Vy, = y, — y,_,. Stationary is established visa vie the mean and autocovariance
functions, respectively.

Ve =Y = Ve = BIE - [t —1D+ 0 —weeq. = 1+ 0r — @y
The mean function is applied in the following manner:
E[Vy.] = E[By + w; + we_q1] = By + E[we] — E[w—4] = B4

B is independent of time t and is thus stationary, which is also implicit using the autocovariance
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function:
YVx.(t + h,h) = yVx:(h) = cov(Veirn Ve)
= cov(B1 + Yesn = Vern-1.P1 + Ve — Vi1
= coV(Yesn = Yesn-1,Ye = Ye-1)
= cOV(Ye1n, V) = COV(Vein Ye-1) = COVVeyn—1,¥e) + €oV(Yern—1, Ye-1)
=y () -1+ -y k-1 +y,k)
=2yy() —yy(h+ 1) —yy(h = 1)

Differencing h shows that the autocovariance of the form yVy,(h) is not dependent on time t.

Figure 3 of the sample ACF shows a slow dampening which indicates a long memory process.

The presence of non-stationarity can be established visa vie trend alone.
Figure 3

Sample Autocorrelation Function (ACF) Plot for Litecoin’s Adjusted Price
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Note. A lag of 100 is enough to show these effects but is by no means the maximum lag for the

series. Shumway & Stoffer (2019) present a basic equation for the expression of a long memory

process as a byproduct of differencing fractional values where
(1 - B)dxt == (Ut,

asserting that “time series data tend to exhibit sample autocorrelations that are not necessarily
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large (as in the case of d = 1), but persist for a long time” (p. 186).

Figure 4 shows the effects of differencing the Litecoin time series; the remaining residuals are
relegated to white noise, taking on a constant zero mean.

Figure 4

Litecoin Continuous Compound Return (2014 — 2021)

Return in %
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Note. A continuous compound return is the direct result of differencing. The red line shows the
mean annualized return of approximately 14%. This can be likened to the Dow-Jones Industrial
Average, differenced data with a mean of zero and stationary property.

While differencing can be effectively performed by a diff() function call on the log of the
time series, an alternative method is prescribed whereby the differenced time series is a function
of adjusted prices divided by the open prices minus one; the graphical output produced by this
function is the same. Differencing the log of adjusted prices produces continuous compound
returns over time. This adjusts the overall model to an order and magnitude of MA(1) whereby
the ACF cuts off after lag 1. Establishment of a strategical analytics framework is key in

forecasting the annualized returns of the Litecoin cryptocurrency. However, prior to
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commencing the analytics process it is important to establish the null and alternative hypotheses
for the mean of returns r as follows:

Hy: w, = 14%; Hy: py > 14%.
ARIMA Models

Combining AR(1) with MA(1) produces an autoregressive integrated moving average

model of ARIMA(1,0,1):
v =c+0.341y,_; — 0.351¢_4
where ¢ = 0.1457 x (1 — 0.3409) = 0.096 and &, is white noise with a standard deviation of
5.725. Subsequently, six ARIMA models are tested for performance visa vie AIC, initializing
with ARIMA(0,1,0), a random walk with a zero mean:
Vye =¥ — Vi1
Ye = YVt-1 = & Ye = V-1 T €
The Akaike Information Criterion (AIC) score is but one method deployed for model selection
where the model with the lowest score is optimum. Table 2 (in the supplementary materials
section) shows the corresponding AIC scores commensurate with each respective ARIMA
model. From this vantage point alone, ARIMA(3,1,2) can be selected and represented in the
following equation:
ye = 0.663y,_1 — 0.008y,_, — 0.040,_5 — 1.664¢&,_; + 0.664¢,_, + &,
where ¢ = 0 and &, is white noise with a standard deviation of 0.058.

At this juncture, operating from a strictly empirical standpoint and structure necessitates
the use of an all-encompassing automatic ARIMA model that can determine its own set of
unique and optimal parameters. Within the construct of the R environment, the auto.arima()
function looks almost identical to that of the standard arima() function, with one exception; the

“auto ARIMA takes into account the AIC and BIC values generated...to determine the best
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combination of parameters” (Singh, 2018). Moreover, “it should be noted that the AIC statistic
is designed for preplanned comparisons between models (as opposed to comparisons of many
models during automated searches)” (Kuhn & Johnson, 2016, p. 493) and is thus used to select
an optimal model (ARIMA(3,1,3)).
GARCH Model
The GARCH model is a response to the volatility shocks of the market, which requires
thousands of observations. The generalized form of the GARCH(1,1) model is expressed as
follows:
0 = ay + ayat_, + Biot .
The forecast for the GARCH(1,1) model originates at time t in:
of(1) = ag+ a;af + B,of
and proceeds ¢ steps ahead in the following manner:
of(0) = ay + (ay + ot (£ —1),£ =2,
o’ =ay/(1—a;—B)
[07(£) — 0?1 = (a1 + B1)* " a? (1) — 0?].
Thus, as £ —» o, 62 (£) - o2, where a; + ; < 1. When the volatility forecast approaches
infinity, the long-term variance at time t approaches infinity in the same manner. This is
conditional upon the presence of the persistence of volatility being less than 1. Thus, “the speed
of mean reverting to the long-term variance can also be measured by the half-life £ =
log(0.5) /log(a; + B;1)” (Tsay, 2013, p. 245). The half-life is the amount of time that it takes for
half of the volatility to diminish and revert to the mean—in essence, how long Litecoin’s
volatility will endure in a post-shock condition prior to reverting to its natural state. Whereas

there are 252 trading days in the stock market, cryptocurrencies operate continuously. Therefore,

volatility is annualized for h-period returns and is defined by o, , , = +/365/h a5, where a refers
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to annualized volatility and h refers to number of days. Figure 5 represents these volatility shocks
which are calculated by the standard deviation of the return over annualized time.
Figure 5

Litecoin — Annualized Volatility
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Volatility shocks are observed throughout the series; year 2017 notably shows one of the
highest peaks. Analysis of these shocks is conducted with the rugarch package (v1.4-4;
Ghalanos, 2020). GARCH is introduced as a response to these stochastic volatility shocks where
GARCH(1,1) is the best model fit according to the conditional variable dynamics of the ensuing
summary output. However, it is important to note that the mean estimate of 0.000735 with a
standard error of 0.000524 bears no statistical significance at a p-value of 0.160717 where a =
0.05. The AIC and BIC are relatively low, expressing values of -3.506 and -3.488, respectively.
More importantly, the weighted Ljung-Box test on standardized residuals shows corresponding
lags with statistically significant p-values. Furthermore, the Adjusted Pearson Goodness-of-Fit

“calculates the chi-squared goodness of fit test, which compares the empirical distribution of the
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standardized residuals with the theoretical ones from the chosen density” (Ghalanos, 2020).
Herein, “the null hypothesis is that the conditional error term follows a normal distribution”
(Tsafack, 2021). Each respective value presented is statistically significant, thereby rejecting a
normal distribution (the null hypothesis) and corroborating the originally presented skewed
Student’s t-distribution. Moreover, additional evidence for GARCH-like behavior is provided
since the ACF and PACF in Figure 6 below are both tapering off incrementally.

Figure 6

Litecoin Annualized Volatility - ACF and PACF
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Note. The ACF and PACF is shown at a maximum lag of 500 to highlight the gradual tailing off
effect. However, the code corresponding to these plots in the Appendix is not set to a maximum
lag, as it “defaults to vn + 10 unless n < 60” (Stoffer & Poison, 2021).

Summarized Results

Fitting the GARCH(1,1) model to Litecoin’s return data uncovers some interesting
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findings. For example, whereas the presence of stochastic volatility has been established through
the lens of annualized returns, its persistence is highlighted visa vie Figure 7 where the
conditional standard deviation is plotted versus returns. Two prominent shocks are observed in
early 2018 and 2020.

Figure 7

Conditional Standard Deviation (vs |Returns|)
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Note. The volatility trajectory is annualized through the end of 2021, expressing a standard
deviation on return of approximately 0.058.

Revisiting the ARIMA(3,1,3) model is an important step before exploring predictive
modeling. In so doing, additional findings are presented that are consistent with selection of an
optimal model. The AIC score (-7446) is among the lowest of all the ARIMA models presented
shown thus far. Table 2 shows that ARIMA(3,1,2) is slightly higher (-7453) by 7 units
(supplementary materials). Moreover, the summary output table shows that all components of the
moving average model are statistically significant where 0 < p < 0.002. ARIMA(3,1,3) is

represented in the following equation:
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ye = —0.181y,_; + 0.567y,_, — 0.002y;_5 — 0.816¢,_; — 0.722¢,_, + 0.540¢,_5 + &,
where ¢ = 0 and &, is white noise with a standard deviation of 0.058.
Figure 8 shows the ensuing graphical output for this model which contains the diagnostics for the
standardized residual, ACF, Q-Q and Ljung-Box statistic.
Figure 8

ARIMA(3,1,3) Diagnostics

Model: (3,1,3) Standardized Residuals
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Note. The standardized residuals report trend-less and white noise-like behavior. The ACF of the
residuals exhibits a sharp decline after lag 1, corroborating its MA(1) behavior. Moreover, the
Normal Q-Q plot of the standardized residuals operates off the assumption of normality, albeit
with a reasonable number of outliers at both tails. Lastly, the p-values shown in the Ljung-Box
statistic plot are below the threshold of 0. Overall, the model has a good fit.

The modeling phase is complete, and an ensuing forecast of 41 days from November 30,
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2021 is produced with a 95% confidence interval as shown in Figure 9 below. The time horizon
(x-axis) is indexed on a numerical scale ranging from 2200-2500, where the trajectory is
illustrated using a red color.

Figure 9

Forecasts from ARIMA(3,1,3) Model
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Note. Forecast prediction: Once Litecoin surpasses an adjusted closing price of $400, it will drop
below $200 and continue to fluctuate normally (as expected), reaching a maximum value of
$253.00 within the next 41 days.
Limitations

Predictions are made within a 95% confidence level based on a chi-squared distribution.
Moreover, whereas the premise behind building GARCH(1,1) is to strengthen the case for
volatility as a function of time, it is not used to make £ step ahead forecasts in this paper.

Subsequent explorations along these lines will only stand to strengthen pre-existing time series
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analyses of similar magnitudes. Furthermore, additional data visa vie larger sample size will be
required to perform more robust, meaningful analyses (ARIMA included). Moreover, other
variants of the GARCH model can be considered, like the GJR-GARCH model “developed in
1993 by Glosten, Jagannathan and Runkle” (Tsafack, 2021). One final note that is important to
make is that the null hypothesis regarding the mean of the return warrants subsequent testing to
establish whether it is possible to reject or fail to reject the premise that will remain at 14%.
Conclusion

Litecoin, one of the highly traded cryptocurrencies on the market possesses non-
stationarity and high volatility, but substantial technological and financial potential. Its high
skewness on all price (and volume) attributes aside, its periodical peaks can cycle every 675 and
1,350 days, which adds sentiment to a probable economic gain (thrust) in the near future.
Differencing the time series is required, and from the tailing off of the ACF and PACF it is
reasonable to use the ARIMA model on the cryptocurrency’s data to perform the forecast from
the final model selection of ARIMA(3,1,3). In the next 41 days from November 30, 2021, the
adjusted price should be fluctuating between $400 and $200 and then continue with its expected
volatile movement.

This paper commences with the behaviors, characteristics, and historical movements of a
highly rated cryptocurrency. It culminates with a forecast on its adjusted return, which is a direct
byproduct of quantitative analysis. While past performance is not indicative of future results, a
calculated effort is made so that investors can make informed decisions backed by facts and

figures alone.
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Table 1

Percent Variance and Change by Principal Component

Principal Component

Percent Variance

Percent Change (Delta)

1 89.35
2 10.46 78.90
3 0.11 10.35
4 0.07 0.03
5 0.01 0.06
6 0.00 0.01
Table 2
ARIMA Models: Log Likelihood and AIC
Model Sigma? Log Likelihood AIC
ARIMA(0,1,0) 0.006817 2825 -5647
ARIMA(1,1,0) 0.005141 3195 -6386
ARIMA(0,1,1) 0.003416 3730 -7456
ARIMA(1,1,1) 0.003416 3730 -7454
ARIMA(2,1,2) 0.003416 3730 -7450
ARIMA(3,1,2) 0.003405 3733 -7453
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Appendix

Loading the Necessary Packages (Libraries)

# Pack function: install and load more than one R packages.

# Check to see if packages are installed.
# Install them if they are not,
# Then load them into the R session.

pack <- function(lib){
new.lib <- 1ib[!(1lib %in%
installed.packages() [, "Package"])]
if (length(new.lib))
install.packages(new.lib, dependencies = TRUE)
sapply(1ib, require, character.only = TRUE)

}

# usage

packages <- c('astsa', 'xts', 'tidyquant', 'quantmod', 'tidyverse', 'dplyr',
'pander', 'fpp2', 'broom', 'caret', 'factoextra', 'corrplot',
'e1071', 'rugarch')

pack(packages)

#i#t astsa xts tidyquant quantmod tidyverse dplyr pander

#i# TRUE TRUE TRUE TRUE TRUE TRUE TRUE

#i# fpp2 broom caret factoextra  corrplot el1071 rugarch

#i# TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Preprocessing - Initial Steps

# get (read-in) data for the last 10 years
start = as.Date("2011-11-30") # start date
end = as.Date("2021-11-30") # end date

# data might not be available for entirety of date Tange

# but a 10 year look back is done to accommodate full size and scope

getSymbols(c("LTC-USD"),

src = "yahoo",
from = start,
to = end)

## [1] "LTC-USD"



Exploratory Data Analysis (EDA)

# cast litecoin time sertes into dataframe
litecoin_df <- data.frame(" W)
colnames(litecoin_df) <- c("Open", "High", "Low", "Close", "Volume", "Adjusted")

litecoin.ts <- tq_get("LTC-USD", "2011-11-30", "2021-11-30") %>%
select(adjusted) %>% # adjusted price (more accurate than close price)

ts(.) # turning it into a time series object

ltc_xts <- as.xts(litecoin_df)

str(litecoin_df); str(litecoin.ts)

## ’data.frame’: 2632 obs. of 6 variables:

## $ Open :num 5.09 5.07 4.69 4.33 4.26 ...

## $ High :num 5.17 5.07 4.76 4.62 4.3 ...

## $ Low :num 4.97 4.58 4.25 4.2 4.15 ...

## ¢ Close :num 5.06 4.69 4.33 4.29 4.25 ...

## $ Volume : num 3071840 4569260 3917450 5490660 2931220 ...
## $ Adjusted: num 5.06 4.69 4.33 4.29 4.25 ...

## Time-Series [1:2632, 1] from 1 to 2632: 5.06 4.69 4.33 4.29 4.25 ...
## - attr(*, "dimnames")=List of 2

## ..$ : NULL

## ..$ : chr "adjusted"

cat("Dimensions of dataset:", dim(litecoin_df)) # dimensions of dataset

## Dimensions of dataset: 2632 6

cat("There are", sum(is.na(litecoin_df)), 'missing values in the dataset. \n')

## There are 24 missing values in the dataset.

# list columns pertaining to missing values in dataframe
list_na <- colnames(litecoin_df) [ apply(litecoin_df, 2, anyNA)]; list_na

## [1] "Open" "High" "Low" "Close" "Volume" "Adjusted"

# remove missing values

litecoin_df <- litecoin_df[complete.cases(litecoin_df),]
litecoin.ts <- litecoin.ts[complete.cases(litecoin.ts),]
ltc_xts <- ltc_xts[complete.cases(ltc_xts),]

# Check for missing values after complete cases (removal)
cat("\n There are", sum(is.na(litecoin_df)), 'missing values in the dataset.\n',
'New dimensions of dataset:', dim(litecoin_df))# dimensions of dataset

##
## There are O missing values in the dataset.
## New dimensions of dataset: 2628 6



At the time of the analysis, the dataset has 2628 rows and 6 columns of data.

# inspect the first and last few rows of data
head(litecoin_df, 8)

## Open High Low Close Volume Adjusted
## 2014-09-17 5.08589 5.17077 4.96595 5.05855 3071840 5.05855
## 2014-09-18 5.06543 5.06543 4.57996 4.68523 4569260 4.68523
## 2014-09-19 4.68729 4.75582 4.25435 4.32777 3917450 4.32777
## 2014-09-20 4.32920 4.61608 4.20219 4.28644 5490660 4.28644
## 2014-09-21 4.26307 4.30013 4.15499 4.24592 2931220 4.24592
## 2014-09-22 4.24593 4.41688 4.21013 4.24235 1855960 4.24235
## 2014-09-23 4.23999 4.88135 4.18887 4.74657 4661670 4.74657
## 2014-09-24 4.74420 4.74512 4.62769 4.66679 2662290 4.66679
tail(litecoin_df, 8)

#H# Open High Low Close Volume Adjusted

## 2021-11-23 209.3134 218.4258 205.9170 216.3890 1944651936 216.3890
## 2021-11-24 216.3625 217.8411 206.5169 209.8066 1884041986 209.8066
## 2021-11-25 212.2335 229.6452 210.9241 215.6350 1953190727 215.6350
## 2021-11-26 222.9104 224.8620 190.8467 194.8746 2690646017 194.8746
## 2021-11-27 195.5579 200.8455 191.1983 195.1744 1406618152 195.1744
## 2021-11-28 195.4146 199.8712 184.1060 199.3542 1712282909 199.3542
## 2021-11-29 199.5910 209.2916 195.7546 205.8702 1784850980 205.8702
## 2021-11-30 205.7330 218.3396 198.1463 208.0145 2122547294 208.0145

Summary Statistics

summary(litecoin_df[,6]) # swummary stats of adjusted close prices

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.157 3.879 46.324 64.075 87.115 386.451

Distributions

# histogram distributions
par( C(2,3): C(Q: 2’ 2’ 2))
options( 999)

for (i in 1:ncol(litecoin_df)) {
hist(litecoin_df[,i],

names (litecoin_df[i]), c(0,1600),
paste(names(litecoin_df[i]), "- Histogram"),
"grayGO II)
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# boxzplot distridbutions
par( c(2, 3),
c(2, 2, 2, 2))
for (i in 1:ncol(litecoin_df)) {
boxplot(litecoin_df[,i],
names (litecoin_df[i]),
paste(names(litecoin_df[i]), "- Boxplot"), TRUE,
||grayu)
}
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The OHLC (open, high, low, close) and adjusted prices exhibit long-tailed distributions with a right skew;



so does the volume.

Since we are interested in evaluating Litecoin’s performance as a cryptocurrency, the final (close) price would
be intrinsically of interest; but, more importantly, the “adjusted closing price is considered to be a more
technically accurate reflection of the true value” (Bischoff, 2019).

# test skewness by looking at mean and median relationship

mean_ltc <- round(apply(litecoin_df, 2, mean, T),0)
median_ltc <- round(apply(litecoin_df, 2, median, T),0)
distribution<- data.frame(mean_ltc, median_ltc)
distribution$Skewness <- ifelse(mean_ltc > 2 + median_ltc, "skewed", "normal")
distribution

## mean_ltc median_ltc Skewness

## Open 64 46  skewed

## High 67 48  skewed

## Low 61 45 skewed

## Close 64 46 skewed

## Volume 1593186877 375924496 skewed

## Adjusted 64 46  skewed

# Check for exact skewness in LTC.Volume

skewValue <- apply(litecoin_df, 2, skewness, T)
skewValue
## Open High Low Close Volume Adjusted

## 1.410603 1.453786 1.357228 1.406507 2.299834 1.406507
# Applying Bozx—Cox Transformation on skewed variable

trans <- preProcess(data.frame(litecoin_df), c("BoxCox"))
trans

## Created from 2628 samples and 6 variables

##

## Pre-processing:

## - Box-Cox transformation (6)
## - ignored (0)

##

## Lambda estimates for Box-Cox transformation:
## 0.2, 0.2, 0.2, 0.2, 0.1, 0.2

# look at and compare to transformed data

transformed <- predict(trans, data.frame(litecoin_df))
skew_transformed <- apply(transformed, 2, skewness, T
skew_transformed

## Open High Low Close Volume Adjusted
## -0.06181721 -0.05492312 -0.07210481 -0.06325734 -0.38318043 -0.06325734

new_skew <- data.frame(skewValue, skew_transformed)

new_skew$Skew_Variance <- ifelse(skewValue < skew_transformed, "More skewed",
"Less skewed")

new_skew



## skewValue skew_transformed Skew_Variance

## Open 1.410603 -0.06181721  Less skewed
## High 1.453786 -0.05492312 Less skewed
## Low 1.357228 -0.07210481 Less skewed
## Close 1.406507 -0.06325734 Less skewed
## Volume 2.299834 -0.38318043 Less skewed
## Adjusted 1.406507 -0.06325734  Less skewed

Correlation Matrix

# assign correlation function call to wariable
cor_ltc <- cor(litecoin_df)
# plot the correlation table (matriz)
corrplot(cor_ltc,
method="color",
col=colorRampPalette(c("yellow",
"white",
"orange")) (200),
addCoef.col = "black",
tl.col="black", tl.srt=45, type="lower")

Open

High

Low

Close

Volume

0.57 0.58 0.56 0.57

Adjusted

-1 -08-06-04-02 0 02 04 06 08 1

From the correlation matrix, it can be discerned that whereas the OHLC and adjusted prices exhibit multi-
collinearity at r = 1, their relationships with volume is much less pronounced, where 0.56 < r < 0.58.



Principal Component Analysis (PCA)

# center, scale the data, and assign to PCA wvariable
litecoin.pca <- prcomp(litecoin_df, TRUE, TRUE)

# assign to wartance explained variable
var_explained <- round(litecoin.pca$sdev 2/sum((litecoin.pca$sdev)"2)*100, 4)

fviz_eig(litecoin.pca, "Scree Plot of Six Principal Components",
"Principal Components",
"Percent Variance Explained",
"grey", "grey",
"blue", T,
theme_classic())
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Table 1: Percent Variance and Change by Principal Component

Principal Component Percent Variance Percent Change (Delta)

1 89.35

2 10.46 78.9
3 0.11 10.35
4 0.07 0.03
) 0.01 0.06
6 0 0.01




Approximately 89.35% of the variance in the data is explained by the first principal component; thus, the
effective dimension is 1. This is supported by and demonstrated in the scree plot and the ensuing table
above. The table itself numerically demonstrates the percent variance that is explained by each respective
principal component. The scree plot visually depicts “the percentage of the total variance explained by each
component” (Kuhn & Johnson, 2016, p. 38).

# create new wvariable for sole purpose of plotting years on xz—azxis, not indices

litecoin_plot <- ts(as.vector(litecoin.ts), c(2014), 365)
tsplot(litecoin_plot, 'LTC Adjusted Closing Prices (2014 - 2021)°',
'Year', 'Adjusted Price (USD)') # plot the time series

LTC Adjusted Closing Prices (2014 — 2021)
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The time series shows a clear trend with several predominant peaks and troughs, at approximately 2017 - 2018
and 2020 - 2021, respectively. To mitigate (offset) the trend, differencing will be performed. Furthermore,
the autocorrelation function (ACF) and partial autocorrelation function (PACF) are examined. Whereas
ACF “measures the linear predictability of the series at time ¢, say x; using only the value of 2;” (Shumway
& Stoffer, 2019, p. 20), the PACF does the same for a truncated lag length.

Autocorrelation Function (ACF)

v(s,t)

Y~ o )

where —1 < p(s,t) < 1.

For the sample ACF, we have:

Aalh) _ (Kin — X)(X, — X)
7(0) S (X - X)?

= COI’I‘(Xt+h7Xt)



par( c(2,1), c(2,2,0,0) + 0.1, c(1,4,3,1) + 0.1)
acf(litecoin_df$Adjusted, 100, 'Litecoin ACF and PACF for Adjusted Prices')
pacf(litecoin_df$Adjusted, 100, U '"PACF')

Litecoin ACF and PACF for Adjusted Prices
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Whereas the ACF gradually tapers off, the PACF cuts off after lag 1, thereby relegating this to an AR(1)
model. So we have the following:

arima(litecoin_df$Adjusted, c(1, 0, 0))

##

## Call:

## arima(x = litecoin_df$Adjusted, order = c(1, 0, 0))
##

## Coefficients:

## arl intercept

## 0.9960 64.0773

## s.e. 0.0018 30.5462

##

## sigma”2 estimated as 46.5: 1log likelihood = -8776.55, aic = 17559.09

(g —p) = 1(Te—1 — p) + wy.
(¢ — 64.0773) = 0.9960(x¢—1 — 64.0773) + w;
xy = 64.0773 — (64.0773 x 0.9960) + 0.9960x;_1 + wy = 0.256 4+ 0.9960x;_1 + w;



Smoothing and its Effects

We plot the data for the last six years (November 2014 through November 2021).

Next, we smooth the data by introducing the simple moving average (SMA), and exponential moving average
(EMA), respectively, weighting the effects by 30 days (one full month).

chartSeries(litecoin_df, theme = chartTheme("white"))

litecoin_df [2014-09-17/2021-11-30]
Last 208.014542 Al
— 300
— 200
— 100
- — 0
10000 -|  Volume (millions):
0 —]
Sep 17 2014 Sep 01 2016 Sep 01 2018 Sep 01 2020
addSMA(30) # smoothed out moving average by 30 days
litecoin_df [2014-09-17/2021-11-30]
Last 208.014542 —
— 300
— 200
— 100
— ' ' ~ 0
10000 -  Volume (millions): !g !! !
0 —]

Sep 17 2014 Sep 01 2016 Sep 01 2018 Sep 01 2020
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addEMA(30) # exzponential moving average by 30 days

litecoin_df [2014-09-17/2021-11-30]
Last 208.014542 - 400
— 300
— 200
— 100
10000 -  Volume (millions):
0 -
Sep 17 2014 Sep 01 2016 Sep 01 2018 Sep 01 2020
Spectral Analysis Cyclical Behavior Periodogram Filters
par(nfrow=c(1,2)); ltcfreq <- mvspec(litecoin.ts,taper=0,log="no") # peaks
ltcfreq2 <- spec.pgram(litecoin.ts,taper=0,log="yes",
main ='Periodogram with CI') # graph confidence interval
Series: litecoin.ts | Raw Periodogram | taper =0 Periodogram with ClI
fs- fs
28] 25 |
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frequency frequency

# sort the frequencies in descending order and get top 2
sort_ltcfreq <- sort(ltcfreq$spec, decreasing = TRUE) [c(1,2)]
pl <- ltcfreq$freqlltcfreq$spec==sort_ltcfreq[1]]; pil

## [1] 0.0007407407

p2 <- ltcfreq$freqlltcfreq$spec==sort_ltcfreq[2]]; p2

## [1] 0.001481481
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cat('Cycles are occuring every', round(1/pl,1), 'days and ', 1/p2, 'days')

## Cycles are occuring every 1350 days and 675 days

CI <- function(peak_spec){
u <- qchisq(0.025,2)
1 <- qchisq(0.975,2)
c((2xpeak_spec) /1, (2*xpeak_spec) /u)} # confidence intervals of the peaks
CI(sort_ltcfreqll]l) # CI for peak 1

## [1] 357264.8 52054543.7

CI(sort_ltcfreql2]) # CI for peak 2

## [1] 149449.4 21775218.9

Dominant peak is = 0.0. Each of the generic confidence intervals is too wide to be of much use.

# nonparametric spectral estimation + graph the data with different tapering

par (nfrow=c(2,2))

ltcfreq_taperO = mvspec(litecoin.ts, spans=c(2,2), log="no", taper=0)

ltcfreq_taper2 = mvspec(litecoin.ts, spans=c(2,2), log="no", taper=0.2)

ltcfreq_taper5 = mvspec(litecoin.ts, spans=c(2,2), log="no", taper=0.5)

plot(ltcfreq_taperO$freq, ltcfreq_taperO$spec, log="y", type="1",
ylab="adjusted-spectrum", xlab="frequency", panel.first=Grid())

lines(ltcfreq_taper2$freq, ltcfreq_taper2$spec, col=2)

lines(ltcfreq_taper5$freq, ltcfreq_taperb5$spec, col=4)

abline(v=1/16, 1ty=2)

legend("topright", legend=c("no taper", "20% taper", "50% taper"), lty=1,

col=c(1,2,4), bty="n"
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By comparing the different tapering, we can see that having more tapering can slightly decrease the degrees
of freedom and enhances the center of the data relative to the extremities. Thus we choose the smoothing
with 50% tapering.
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Preprocessing - Differencing

diff_1tc_1 <- diff(log(litecoin_plot))*100
tsplot(diff_1ltc_1, 'Litecoin Continuous Compound Return', 'Return in %')
abline (h=mean(diff_ltc_1), 6); cat('Mean return:', mean(diff 1tc_1))

Litecoin Continuous Compound Return

Return in %

I T I T I T I T I T I T I T I
2014 2015 2016 2017 2018 2019 2020 2021
Time

## Mean return: 0.1414742

This can be likened to the Dow-Jones Industrial Average (DJIA), which is the differenced data, and shows
a mean of zero; this gives it the stationary property.

par( c(2,1), c(1,1,0,0) + 0.09, c(1,4,3,0.5) + 0.08)
acf(diff_ltc_1, 500, 'Differenced Litecoin Adjusted Prices')
pacf(diff_1tc_1, 500, BN '"PACF'")

Differenced Litecoin Adjusted Prices
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arima(diff_1ltc_1, c(1,0,1)) # Introductory ARIMA model (1,0,1)

##

## Call:

## arima(x = diff_1ltc_1, order = c(1, 0, 1))
##

## Coefficients:

## arl mal intercept

## 0.3409 -0.3514 0.1457

## s.e. 0.4836 0.4728 0.1099

##

## sigma”2 estimated as 32.77: log likelihood = -8310.97, aic = 16629.95

yr = c+0.3409y;_1 — 0.3514e,_;

where ¢ = 0.1457 x (1 — 0.3409) = 0.096031 and e; is white noise with a standard deviation of Vo2 =
V32.77 = 5.725.

par ( c(2,1))
litecoin_df$Return <- litecoin_df$Close/litecoin_df$0pen-1
litecoin_df$Adj_Return <- litecoin_df$Adjusted/litecoin_df$Open-1

# plot return

tsplot(litecoin_df$Return, 'Litecoin Return Over Time: 2014-2021"',
'Return')

# plot adj.return

tsplot(litecoin_df$Adj_Return, 'Litecoin Adjusted Return: 2014-2021',

"Adjusted Return')

Litecoin Return Over Time: 2014-2021
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ARIMA Models

By differencing the data, we remove the trend, and can use the ARIMA model.

At this stage, we can conclude our exploratory data analysis with a six year historical pricing inquiry.
Volatility shocks must be considered.

Cryptocurrency is a relatively new, ever-changing and ever-evolving financial technology. For this reason,
we will take more conservative approach by forecasting five years out.

# create a few models and compare the AIC scores in a table

arima010 <- arima(litecoin_df$Adj_Return, c(0,1,0))
arimall0 <- arima(litecoin_df$Adj_Return, c(1,1,0))
arima011l <- arima(litecoin_df$Adj_Return, c(0,1,1))
arimalll <- arima(litecoin_df$Adj_Return, c(1,1,1))
arima212 <- arima(litecoin_df$Adj_Return, c(2,1,2))
arima312 <- arima(litecoin_df$Adj_Return, c(3,1,2))

# find AIC for each model and assign to wartiable
sigma_2 <- c(arima010$sigma2, arimallO$sigma2, arimaOli$sigma2, arimalll$sigma2,
arima212$sigma2, arima312$sigma2)

AIC <- c(arima010$aic, arimallO$aic, arimaOlil$aic, arimalill$aic, arima212$aic,
arima312$aic)

LOG <- c(arima010$loglik, arimallO$loglik, arima011$loglik, arimalil$loglik,
arima212$loglik, arima312$loglik)

rownames <- c('ARIMA(0,1,0)', 'ARIMA(1,1,0)', 'ARIMA(O,1,1)', 'ARIMA(1,1,1)',
"ARIMA(2,1,2)', 'ARIMA(3,1,2)')

# place the data into a table
tableARIMA <- data.frame(rownames, sigma_2, LOG, AIC)

colnames(tableARIMA) <- c('Model', 'Sigma”2', ' Log Likelihood', 'AIC')

tableARIMA 7>% pander ( 'grid',
"ARIMA Models: Log Likelihood and AIC')

Table 2: ARIMA Models: Log Likelihood and AIC

Model Sigma”2 Log Likelihood AlIC

ARIMA(0,1,0) 0.006817 2825 -5647

ARIMA(1,1,0) 0.005141 3195 -6386

ARIMA(0,1,1) 0.003416 3730 -7456

ARIMA(1,1,1) 0.003416 3730 -7454

ARIMA(2,1,2) 0.003416 3730 -7450

ARIMA(3,1,2) 0.003405 3733 -7453
sarima(litecoin_df$Adj_Return, 3,1,2, FALSE) # the model with lowest AIC score
## $fit
##
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## Call:
## arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),

## xreg = constant, transform.pars = trans, fixed = fixed, optim.control = list(trace = trc,
## REPORT = 1, reltol = tol))

##

## Coefficients:

## arl ar?2 ar3 mal ma2 constant

## 0.6628 -0.0082 0.0398 -1.6641 0.6641 0

## s.e. 0.1113 0.0234 0.0200 0.1114 0.1115 0

##

## sigma”2 estimated as 0.003405: 1log likelihood = 3732.76, aic = -7451.52
##
## $degrees_of _freedom

## [1] 2621

##

## $ttable

#it Estimate SE t.value p.value
## arl 0.6628 0.1113 5.9542 0.0000
## ar2 -0.0082 0.0234 -0.3504 0.7261
## ar3 0.0398 0.0200 1.9952 0.0461
## mal -1.6641 0.1114 -14.9324 0.0000
## ma2 0.6641 0.1115 5.9564 0.0000
## constant 0.0000 0.0000 0.0286 0.9772
#i#

## $AIC

## [1] -2.836511

##

## $AICc

## [1] -2.836499

##

## $BIC

## [1] -2.82086

yr = 0.6628y,_1 — 0.0082y;_o 4+ 0.0398;_3 — 1.6641ec;_1 + 0.6641e,_o + €,

where ¢ = 0 and ¢, is white noise with a standard deviation of v/o2 = 1/0.003405 = 0.058352.

Optimal ARIMA Model

ltc.arima_opt <- tq_get("LTC-USD", "2015-01-01", "2021-09-30") %>%
select (adjusted) %>} # adjusted price (more accurate than close price)

ts(.) # turning it into a time series object

crypto_model <- auto.arima(ltc.arima_opt); crypto_model # Optimal ARIMA model

## Series: ltc.arima_opt
## ARIMA(3,1,3)

##
## Coefficients:
## aril ar2 ar3 mal ma?2 ma3
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## 0.6688 0.7767 -0.7404 -0.6954 -0.7546 0.7909
# s.e. 0.5612 0.3431 0.1273 0.5243 0.3831 0.1779
##

## sigma”2 estimated as 46.41: log likelihood=-8208.97

## AIC=16431.93 AICc=16431.98 BIC=16472.6

# forecast the next 41 closing prices, with a 95 CI

ltc_forecast <- forecast(crypto_model, 41, c(.95)); 1ltc_forecast
#it Point Forecast Lo 95 Hi 95
## 2466 152.6847 139.33254 166.0369
## 2467 152.8352 134.20225 171.4681
## 2468 153.4791 130.72922 176.2291
## 2469 154.3697 127.92189 180.8175
## 2470 155.3541 125.38883 185.3193
## 2471 156.2272 122.81387 189.6405
## 2472 156.9163 120.12849 193.7040
## 2473 157.3264 117.25122 197.4016
## 2474 157.4894 114.26737 200.7113
## 2475 157.4067 111.20322 203.6101
## 2476 157.1743 108.18792 206.1606
## 2477 156.8340 105.26026 208.4077
## 2478 156.4871 102.52114 210.4531
## 2479 156.1629 99.97227 212.3535
## 2480 155.9287 97.66111 214.1962
## 2481 155.7770 95.54545 216.0086
## 2482 165.7337 93.62908 217.8384
## 2483 155.7605 91.84472 219.6762
## 2484 155.8570 90.17816 221.5358
## 2485 155.9744 88.56290 223.3858
## 2486 156.1080 86.99076 225.2253
## 2487 156.2171 85.41387 227.0203
## 2488 156.3070 83.84153 228.7724
## 2489 156.3528 82.24802 230.4576
## 2490 156.3725 80.65770 232.0873
## 2491 156.3547 79.05945 233.6500
## 2492 156.3242 77.48299 235.1654
## 2493 156.2754 75.92120 236.6296
## 2494 156.2322 74.40000 238.0644
## 2495 156.1880 72.90904 239.4670
## 2496 156.1611 71.46629 240.8559
## 2497 156.1407 70.05638 242.2250
## 2498 1566.1389 68.69022 243.5875
## 2499 156.1418 67.34965 244.9339
## 2500 156.1574 66.04200 246.2727
## 2501 156.1714 64.74976 247.5931
## 2502 156.1908 63.48003 248.9015
## 2503 156.2031 62.21833 250.1879
## 2504 156.2160 60.97316 251.4587
## 2505 156.2198 59.73354 252.7060
## 2506 156.2232 58.50920 253.9372
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# actual prices used for plot below

actual_price <- tq_get("LTC-USD", from = "2015-01-01", to = "2021-11-30") %>%
select(adjusted) %>% ts(.)

# Plotting forecasted prices against the actual prices

autoplot(ltc_forecast, xlab='Time (Indexed)',ylab=('Litecoin Adjusted Price')) +
autolayer (window(actual_price, start = 2300), size=0.8) +
theme_classic() +
theme (legend.position = "") +
y1im(0, 500)+
coord_cartesian(xlim = ¢(2200,2510))

Forecasts from ARIMA(3,1,3)

500 1

400 1

3001

200 1

Litecoin Adjusted Price

100 1

2200 2300 2400 2500
Time (Indexed)

Diagnostics for Optimal ARIMA Model

sarima(litecoin_df$Adj_Return, 3,1,3)

## initial value -2.493863

## iter 2 value -2.715988
## iter 3 value -2.764973
## iter 4 value -2.808328
## iter 5 value -2.819179
## iter 6 value -2.820811
## iter 7 value -2.823961
## iter 8 value -2.830462
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iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
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iter
iter
iter
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iter
iter
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iter
iter

9
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value
value
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value
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value
value
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value
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value
value
value
value
value
value
value
value
value

.834061
.836192
.837421
.837597
.837726
.837759
.837770
.837810
.837810
.837811
.837844
.837855
.837953
.838398
.838680
.838877
.839033
.839360
.839747
.840184
.840496
.840496
.840544
.840544
.840552
.840552
.840552

final value -2.840552

converged

initial
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iter
iter
iter
iter
iter
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iter
iter
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.838511
.838563
.838716
.838742
.838783
.838788
.838790
.838792
.838795
.838799
.838800
.838801
.838801
.838802
.838804
.838809
.838809
.838811
.838818
.838818
.838819
.838819
.838824
.838833
.838850
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## iter 26 value -2.838878
## iter 27 value -2.838972
## iter 28 value -2.839057
## iter 29 value -2.839191
## iter 30 value -2.839218
## iter 31 value -2.839286
## iter 32 value -2.839286
## iter 33 value -2.839286
## iter 34 value -2.839291
## iter 35 value -2.839292
## iter 36 value -2.839292
## iter 37 value -2.839294
## iter 38 value -2.839297
## iter 39 value -2.839305
## iter 40 value -2.839314
## iter 41 value -2.839324
## iter 42 value -2.839329
## iter 43 value -2.839329
## iter 43 value -2.839329
## iter 43 value -2.839329
## final value -2.839329
## converged

Model: (3,1,3) Standardized Residuals
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## $fit
##
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:

arima(x = xdata, order = c(p, d, q), seasonal = list(order

xreg = constant, transform.pars = trans, fixed = fixed, optim.control
REPORT = 1, reltol = tol))
Coefficients:
arl ar?2 ar3 mal ma2 ma3 constant
-0.1813 0.5661 -0.0023 -0.8161 -0.7215 0.5399 0
s.e. 0.2028 0.1715 0.0203 0.2014 0.1493 0.1709 0
sigma”2 estimated as 0.003412: 1log likelihood = 3731.37, aic = -7446.73
$degrees_of _freedom
[1] 2620
$ttable
Estimate SE t.value p.value
aril -0.1813 0.2028 -0.8941 0.3713
ar2 0.5661 0.1715 3.3019 0.0010
ar3 -0.0023 0.0203 -0.1111 0.9116
mal -0.8161 0.2014 -4.0531 0.0001
ma2 -0.7215 0.1493 -4.8315 0.0000
ma3 0.5399 0.1709 3.1597 0.0016
constant 0.0000 0.0000 0.0777 0.9381
$AIC
[1] -2.834691
$AICCc
[1] -2.834675
$BIC
[1] -2.816804
vy = —0.1813y;—1 + 0.5661y;_o — —0.0023y;_3 — 0.8161c,_1 — 0.721564_o + 0.5399¢;_3 + &,

where ¢ = 0 and &; is white noise with a standard deviation of Vo2 = 1/0.003412 = 0.05841233.

¢ Standard Residuals: trend-less and white noise-like.

e ACF of Residuals: cuts off after lag 1 indicating its MA behavior.

o Normal Q-Q Plot of Std Residuals: assumption of normality is reasonable w/ some outliers at the tails.

o The p-values for Ljung-Box statistic: all p-values are under 0.0, indicating Q-Statistic is insignificant

which means our model may fit really nicely.
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Calculate Annualized Volatility

return = CalculateReturns(ltc_xts$Adjusted)

return return([-1,]

chart.RollingPerformance( return, "sd.annualized", 365, 12,
"LTC-USD Annualized Volatility")

LTC-USD Annualized Volatility 2014-09-18/2021-11-30
4
3
2 r|
1

Sep 18 2014 Mar 01 2016 Sep 01 2017 Mar 01 2019 Sep 01 2020
volatility <- sd(return)
rolling window <- sqrt(365)*sd(return["2021"])
rownames <- c('Metric')
table_vol<- data.frame(rownames, volatility, rolling_window)

colnames(table_vol)<-c(' ','Annualized Volatility', 'Rolling Window Volatility')
table_vol %>J% pander( 'grid', 'Litecoin Volatility of Return')

Table 3: Litecoin Volatility of Return

Annualized Volatility Rolling Window Volatility

Metric 0.05838 1.189
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acf2(return, 'Litecoin Annualized Volatility - ACF and PACF')

Litecoin Annualized Volatility — ACF and PACF
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LAG
## (,11 ,21 [,3] (,41 ¢,51 [,6] [,71 [,8] [,91 [,10] [,11] [,12] [,13]
## ACF 0 -0.01 0.01 0.06 -0.02 0.09 -0.03 -0.05 0 0.00 0.02 -0.03 0
## PACF 0 -0.01 0.01 0.06 -0.02 0.09 -0.03 -0.05 0 -0.01 0.03 -0.03 0
44 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
## ACF 0.02 0.02 0.01 0.04 -0.01 0.04 0.00 -0.01 -0.01 0.02 0 0.06
## PACF 0.03 0.02 0.01 0.04 0.00 0.04 -0.01 -0.02 -0.01 o0.01 0 0.06
i [,26]1 [,27] [,28] [,291 [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]

## ACF 0.02 0.01 0.01 -0.01 -0.01 0.02 -0.01 0.02 0.02 0.00 -0.01 0.00
## PACF 0.02 0.02 0.01 -0.02 -0.01 0.01 -0.01 0.03 0.02 0.01 -0.01 -0.01

## [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]
## ACF -0.01 0.01 0 0.02 0.03 -0.02 -0.01 0.02 -0.03 -0.01 0.02 -0.02
## PACF -0.01 0.00 0 0.02 0.02 -0.02 -0.02 0.01 -0.03 -0.01 0.01 -0.01
# [,50] [,51] [,52] [,53] [,54] [,55] [,56]1 [,57] [,58] [,59] [,60] [,61]
## ACF 0 -0.04 -0.03 -0.01 0.03 0.01 0.01 -0.01 0.01 0.06 0.00 0
## PACF 0 -0.05 -0.03 -0.01 0.03 0.02 0.01 0.00 0.01 0.05 -0.01 0
## [,62]

## ACF  0.02
## PACF 0.03

From the graph above, we can see that the annualized volatility is throughout the entire history of existence
of LTC, with various magnitudes through different months. This leading to GARCH /conditional volatility.
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GARCH Model

modell = ugarchspec( list( c(0,0)),

list( "sGARCH",
'sstd')

HHARUHRHARHRHRRHRRHRRHRHRRRRH AR R BB RRHRRHBRHRH Y

# model fitting

model_fitting=ugarchfit( return, modell,

model_fitting

##

#H# k———————— *

#H# * GARCH Model Fit *

## *-——————————————————————————— *

#i#

## Conditional Variance Dynamics

## -

## GARCH Model : sGARCH(1,1)

## Mean Model : ARFIMA(1,0,1)

## Distribution : sstd

#i#

## Optimal Parameters

# -

## Estimate Std. Error t value Pr(>|t|)

## mu 0.000735 0.000524  1.4027 0.160717

## arl 0.418107 0.157935  2.6473 0.008113

## mal -0.497210 0.150026 -3.3142 0.000919

## omega  0.000016 0.000007 2.2844 0.022348

## alphal 0.097471 0.011706  8.3264 0.000000

## betal 0.901529 0.013195 68.3219 0.000000

## skew 1.067920 0.023746 44.9724 0.000000

## shape 3.018354 0.128460 23.4965 0.000000

##

## Robust Standard Errors:

## Estimate Std. Error t value Pr(>|t|)

## mu 0.000735 0.000551  1.3349 0.181904

## arl 0.418107 0.166875 2.5055 0.012228

## mal -0.497210 0.158516 -3.1367 0.001709

## omega  0.000016 0.000013  1.2280 0.219459

## alphal 0.097471 0.015074 6.4663 0.000000

## betal 0.901529 0.023431 38.4755 0.000000

## skew 1.067920 0.023843 44.7894 0.000000

## shape 3.018354 0.146389 20.6187 0.000000

##

## Loglikelihood : 4577.366

##

## Information Criteria

## -

##

## Akaike -3.5055

## Bayes -3.4875
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Shibata -3.5055
Hannan-Quinn -3.4989

Weighted Ljung-Box Test on Standardized Residuals
statistic p-value

Lag[1] 12.05 0.00051805882

Lag[2+* (p+q) +(p+q)-1] [5] 17.01 0.00000000000

Lag[4*(p+q)+(p+q)-1]1 [9] 20.75 0.00000002785

d.o.f=2

HO : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
statistic p-value

Lag[1] 0.03717 0.8471

Lag[2*(p+q)+(p+q)-1] [5] 0.13202 0.9967

Lag[4*(p+tq)+(p+q)-11[9] 0.21580 0.9999

d.o.f=2

Weighted ARCH LM Tests

Statistic Shape Scale P-Value
ARCH Lag[3] 0.05465 0.500 2.000 0.8152
ARCH Lag[5] 0.12590 1.440 1.667 0.9818
ARCH Lagl[7] 0.16175 2.315 1.543 0.9982

Nyblom stability test

Joint Statistic: 19.2766
Individual Statistics:

mu 0.11840
arl 0.07957
mal 0.08344
omega 1.70341
alphal 1.67979
betal 2.04314
skew 0.12408
shape 6.02957
Asymptotic Critical Values (10% 5% 1%)

Joint Statistic: 1.89 2.11 2.59
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test

t-value prob sig
Sign Bias 1.4538 0.1461
Negative Sign Bias 0.2108 0.8330
Positive Sign Bias 1.2293 0.2191
Joint Effect 3.3001 0.3476

Adjusted Pearson Goodness-of-Fit Test:
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##
##
##
##
##
##
##
##

group statistic p-value(g-1)
1 20 37.41 0.007046
2 30 54.32 0.002969
3 40 56.28 0.036107
4 50 69.24 0.029979
Elapsed time 1.080804

2

# plot
plot(model_fitting,

##

||a11n)

## please wait...calculating quantiles...
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par (mfrow=c(2,1),
oma = ¢(1.5,0.5,0,0) + 0.10,
mar = c(5,4,3,2) -0.10)
plot(model_fitting, which=2)

##
## please wait...calculating quantiles...

plot(model_fitting, which=3)
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